Step |
Hyp |
Ref |
Expression |
1 |
|
rprmirredlem.1 |
|
2 |
|
rprmirredlem.2 |
|
3 |
|
rprmirredlem.3 |
|
4 |
|
rprmirredlem.4 |
|
5 |
|
rprmirredlem.5 |
|
6 |
|
rprmirredlem.6 |
|
7 |
|
rprmirredlem.7 |
|
8 |
|
rprmirredlem.8 |
|
9 |
|
rprmirredlem.9 |
|
10 |
|
rprmirredlem.10 |
|
11 |
|
rprmirredlem.11 |
|
12 |
6
|
idomcringd |
|
13 |
12
|
ad2antrr |
|
14 |
9
|
ad2antrr |
|
15 |
1 5 4
|
dvdsr |
|
16 |
11 15
|
sylib |
|
17 |
16
|
simpld |
|
18 |
17
|
ad2antrr |
|
19 |
7
|
ad2antrr |
|
20 |
18 19
|
eldifsnd |
|
21 |
13
|
crngringd |
|
22 |
|
simplr |
|
23 |
1 4 21 22 14
|
ringcld |
|
24 |
|
eqid |
|
25 |
1 24
|
ringidcl |
|
26 |
21 25
|
syl |
|
27 |
6
|
ad2antrr |
|
28 |
|
simpr |
|
29 |
28
|
oveq1d |
|
30 |
10
|
ad2antrr |
|
31 |
29 30
|
eqtr4d |
|
32 |
1 4 13 22 14 18
|
cringmul32d |
|
33 |
1 4 24 21 18
|
ringlidmd |
|
34 |
31 32 33
|
3eqtr4d |
|
35 |
1 3 4 20 23 26 27 34
|
idomrcan |
|
36 |
16
|
simprd |
|
37 |
35 36
|
reximddv3 |
|
38 |
37
|
ad2antrr |
|
39 |
1 5 4
|
dvdsr |
|
40 |
14 38 39
|
sylanbrc |
|
41 |
2 24 5
|
crngunit |
|
42 |
41
|
biimpar |
|
43 |
13 40 42
|
syl2anc |
|
44 |
43 36
|
r19.29a |
|