Metamath Proof Explorer


Theorem rprmndvdsr1

Description: A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmndvdsr1.1 1 ˙ = 1 R
rprmndvdsr1.2 ˙ = r R
rprmndvdsr1.3 P = RPrime R
rprmndvdsr1.4 φ R CRing
rprmndvdsr1.5 φ Q P
Assertion rprmndvdsr1 φ ¬ Q ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 rprmndvdsr1.1 1 ˙ = 1 R
2 rprmndvdsr1.2 ˙ = r R
3 rprmndvdsr1.3 P = RPrime R
4 rprmndvdsr1.4 φ R CRing
5 rprmndvdsr1.5 φ Q P
6 eqid Unit R = Unit R
7 3 6 4 5 rprmnunit φ ¬ Q Unit R
8 6 1 2 crngunit R CRing Q Unit R Q ˙ 1 ˙
9 4 8 syl φ Q Unit R Q ˙ 1 ˙
10 7 9 mtbid φ ¬ Q ˙ 1 ˙