Metamath Proof Explorer


Theorem rprmnunit

Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmdvds.2 P = RPrime R
rprmdvds.3 U = Unit R
rprmdvds.5 φ R V
rprmdvds.6 φ Q P
Assertion rprmnunit φ ¬ Q U

Proof

Step Hyp Ref Expression
1 rprmdvds.2 P = RPrime R
2 rprmdvds.3 U = Unit R
3 rprmdvds.5 φ R V
4 rprmdvds.6 φ Q P
5 eqidd φ U 0 R = U 0 R
6 4 1 eleqtrdi φ Q RPrime R
7 eqid Base R = Base R
8 eqid 0 R = 0 R
9 eqid r R = r R
10 eqid R = R
11 7 2 8 9 10 isrprm R V Q RPrime R Q Base R U 0 R x Base R y Base R Q r R x R y Q r R x Q r R y
12 11 simprbda R V Q RPrime R Q Base R U 0 R
13 3 6 12 syl2anc φ Q Base R U 0 R
14 13 eldifbd φ ¬ Q U 0 R
15 nelun U 0 R = U 0 R ¬ Q U 0 R ¬ Q U ¬ Q 0 R
16 15 simprbda U 0 R = U 0 R ¬ Q U 0 R ¬ Q U
17 5 14 16 syl2anc φ ¬ Q U