Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Prime Elements
rprmnunit
Next ⟩
rsprprmprmidl
Metamath Proof Explorer
Ascii
Unicode
Theorem
rprmnunit
Description:
A ring prime is not a unit.
(Contributed by
Thierry Arnoux
, 18-May-2025)
Ref
Expression
Hypotheses
rprmdvds.2
⊢
P
=
RPrime
⁡
R
rprmdvds.3
⊢
U
=
Unit
⁡
R
rprmdvds.5
⊢
φ
→
R
∈
V
rprmdvds.6
⊢
φ
→
Q
∈
P
Assertion
rprmnunit
⊢
φ
→
¬
Q
∈
U
Proof
Step
Hyp
Ref
Expression
1
rprmdvds.2
⊢
P
=
RPrime
⁡
R
2
rprmdvds.3
⊢
U
=
Unit
⁡
R
3
rprmdvds.5
⊢
φ
→
R
∈
V
4
rprmdvds.6
⊢
φ
→
Q
∈
P
5
eqidd
⊢
φ
→
U
∪
0
R
=
U
∪
0
R
6
4
1
eleqtrdi
⊢
φ
→
Q
∈
RPrime
⁡
R
7
eqid
⊢
Base
R
=
Base
R
8
eqid
⊢
0
R
=
0
R
9
eqid
⊢
∥
r
⁡
R
=
∥
r
⁡
R
10
eqid
⊢
⋅
R
=
⋅
R
11
7
2
8
9
10
isrprm
⊢
R
∈
V
→
Q
∈
RPrime
⁡
R
↔
Q
∈
Base
R
∖
U
∪
0
R
∧
∀
x
∈
Base
R
∀
y
∈
Base
R
Q
∥
r
⁡
R
x
⋅
R
y
→
Q
∥
r
⁡
R
x
∨
Q
∥
r
⁡
R
y
12
11
simprbda
⊢
R
∈
V
∧
Q
∈
RPrime
⁡
R
→
Q
∈
Base
R
∖
U
∪
0
R
13
3
6
12
syl2anc
⊢
φ
→
Q
∈
Base
R
∖
U
∪
0
R
14
13
eldifbd
⊢
φ
→
¬
Q
∈
U
∪
0
R
15
nelun
⊢
U
∪
0
R
=
U
∪
0
R
→
¬
Q
∈
U
∪
0
R
↔
¬
Q
∈
U
∧
¬
Q
∈
0
R
16
15
simprbda
⊢
U
∪
0
R
=
U
∪
0
R
∧
¬
Q
∈
U
∪
0
R
→
¬
Q
∈
U
17
5
14
16
syl2anc
⊢
φ
→
¬
Q
∈
U