Metamath Proof Explorer


Theorem rprmnz

Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmnz.p P = RPrime R
rprmnz.0 0 ˙ = 0 R
rprmnz.r φ R V
rprmnz.q φ Q P
Assertion rprmnz φ Q 0 ˙

Proof

Step Hyp Ref Expression
1 rprmnz.p P = RPrime R
2 rprmnz.0 0 ˙ = 0 R
3 rprmnz.r φ R V
4 rprmnz.q φ Q P
5 eqidd φ Unit R 0 ˙ = Unit R 0 ˙
6 4 1 eleqtrdi φ Q RPrime R
7 eqid Base R = Base R
8 eqid Unit R = Unit R
9 eqid r R = r R
10 eqid R = R
11 7 8 2 9 10 isrprm R V Q RPrime R Q Base R Unit R 0 ˙ x Base R y Base R Q r R x R y Q r R x Q r R y
12 11 simprbda R V Q RPrime R Q Base R Unit R 0 ˙
13 3 6 12 syl2anc φ Q Base R Unit R 0 ˙
14 13 eldifbd φ ¬ Q Unit R 0 ˙
15 nelun Unit R 0 ˙ = Unit R 0 ˙ ¬ Q Unit R 0 ˙ ¬ Q Unit R ¬ Q 0 ˙
16 15 simplbda Unit R 0 ˙ = Unit R 0 ˙ ¬ Q Unit R 0 ˙ ¬ Q 0 ˙
17 5 14 16 syl2anc φ ¬ Q 0 ˙
18 elsng Q P Q 0 ˙ Q = 0 ˙
19 4 18 syl φ Q 0 ˙ Q = 0 ˙
20 19 necon3bbid φ ¬ Q 0 ˙ Q 0 ˙
21 17 20 mpbid φ Q 0 ˙