Metamath Proof Explorer


Theorem rpsqrtcl

Description: The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion rpsqrtcl A + A +

Proof

Step Hyp Ref Expression
1 rpre A + A
2 rpge0 A + 0 A
3 resqrtcl A 0 A A
4 1 2 3 syl2anc A + A
5 rpgt0 A + 0 < A
6 sqrtgt0 A 0 < A 0 < A
7 1 5 6 syl2anc A + 0 < A
8 4 7 elrpd A + A +