Metamath Proof Explorer


Theorem rpsqrtcn

Description: Continuity of the real positive square root function. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Assertion rpsqrtcn + : + cn +

Proof

Step Hyp Ref Expression
1 rpssre +
2 ax-resscn
3 1 2 sstri +
4 sqrtf :
5 fdm : dom =
6 4 5 ax-mp dom =
7 3 6 sseqtrri + dom
8 7 sseli x + x dom
9 rpsqrtcl x + x +
10 8 9 jca x + x dom x +
11 10 rgen x + x dom x +
12 ffun : Fun
13 4 12 ax-mp Fun
14 ffvresb Fun + : + + x + x dom x +
15 13 14 ax-mp + : + + x + x dom x +
16 11 15 mpbir + : + +
17 ioorp 0 +∞ = +
18 ioossico 0 +∞ 0 +∞
19 17 18 eqsstrri + 0 +∞
20 resabs1 + 0 +∞ 0 +∞ + = +
21 19 20 ax-mp 0 +∞ + = +
22 resqrtcn 0 +∞ : 0 +∞ cn
23 rescncf + 0 +∞ 0 +∞ : 0 +∞ cn 0 +∞ + : + cn
24 19 22 23 mp2 0 +∞ + : + cn
25 21 24 eqeltrri + : + cn
26 cncffvrn + + : + cn + : + cn + + : + +
27 3 25 26 mp2an + : + cn + + : + +
28 16 27 mpbir + : + cn +