Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The floor and ceiling functions
rpsup
Next ⟩
resup
Metamath Proof Explorer
Ascii
Unicode
Theorem
rpsup
Description:
The positive reals are unbounded above.
(Contributed by
Mario Carneiro
, 7-May-2016)
Ref
Expression
Assertion
rpsup
⊢
sup
ℝ
+
ℝ
*
<
=
+∞
Proof
Step
Hyp
Ref
Expression
1
ioorp
⊢
0
+∞
=
ℝ
+
2
1
supeq1i
⊢
sup
0
+∞
ℝ
*
<
=
sup
ℝ
+
ℝ
*
<
3
0xr
⊢
0
∈
ℝ
*
4
0re
⊢
0
∈
ℝ
5
renepnf
⊢
0
∈
ℝ
→
0
≠
+∞
6
4
5
ax-mp
⊢
0
≠
+∞
7
ioopnfsup
⊢
0
∈
ℝ
*
∧
0
≠
+∞
→
sup
0
+∞
ℝ
*
<
=
+∞
8
3
6
7
mp2an
⊢
sup
0
+∞
ℝ
*
<
=
+∞
9
2
8
eqtr3i
⊢
sup
ℝ
+
ℝ
*
<
=
+∞