Metamath Proof Explorer


Theorem rpsup

Description: The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion rpsup sup + * < = +∞

Proof

Step Hyp Ref Expression
1 ioorp 0 +∞ = +
2 1 supeq1i sup 0 +∞ * < = sup + * <
3 0xr 0 *
4 0re 0
5 renepnf 0 0 +∞
6 4 5 ax-mp 0 +∞
7 ioopnfsup 0 * 0 +∞ sup 0 +∞ * < = +∞
8 3 6 7 mp2an sup 0 +∞ * < = +∞
9 2 8 eqtr3i sup + * < = +∞