Metamath Proof Explorer


Theorem rpvmasum

Description: The sum of the von Mangoldt function over those integers n == A (mod N ) is asymptotic to log x / phi ( x ) + O(1) . Equation 9.4.3 of Shapiro, p. 375. (Contributed by Mario Carneiro, 2-May-2016) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.u U = Unit Z
rpvmasum.b φ A U
rpvmasum.t T = L -1 A
Assertion rpvmasum φ x + ϕ N n 1 x T Λ n n log x 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.u U = Unit Z
5 rpvmasum.b φ A U
6 rpvmasum.t T = L -1 A
7 3 adantr φ f y Base DChr N 0 DChr N | m y L m m = 0 N
8 eqid DChr N = DChr N
9 eqid Base DChr N = Base DChr N
10 eqid 0 DChr N = 0 DChr N
11 2fveq3 m = n y L m = y L n
12 id m = n m = n
13 11 12 oveq12d m = n y L m m = y L n n
14 13 cbvsumv m y L m m = n y L n n
15 14 eqeq1i m y L m m = 0 n y L n n = 0
16 15 rabbii y Base DChr N 0 DChr N | m y L m m = 0 = y Base DChr N 0 DChr N | n y L n n = 0
17 simpr φ f y Base DChr N 0 DChr N | m y L m m = 0 f y Base DChr N 0 DChr N | m y L m m = 0
18 1 2 7 8 9 10 16 17 dchrisum0 ¬ φ f y Base DChr N 0 DChr N | m y L m m = 0
19 18 imnani φ ¬ f y Base DChr N 0 DChr N | m y L m m = 0
20 19 eq0rdv φ y Base DChr N 0 DChr N | m y L m m = 0 =
21 20 fveq2d φ y Base DChr N 0 DChr N | m y L m m = 0 =
22 hash0 = 0
23 21 22 eqtrdi φ y Base DChr N 0 DChr N | m y L m m = 0 = 0
24 23 oveq2d φ 1 y Base DChr N 0 DChr N | m y L m m = 0 = 1 0
25 1m0e1 1 0 = 1
26 24 25 eqtrdi φ 1 y Base DChr N 0 DChr N | m y L m m = 0 = 1
27 26 adantr φ x + 1 y Base DChr N 0 DChr N | m y L m m = 0 = 1
28 27 oveq2d φ x + log x 1 y Base DChr N 0 DChr N | m y L m m = 0 = log x 1
29 relogcl x + log x
30 29 adantl φ x + log x
31 30 recnd φ x + log x
32 31 mulid1d φ x + log x 1 = log x
33 28 32 eqtrd φ x + log x 1 y Base DChr N 0 DChr N | m y L m m = 0 = log x
34 33 oveq2d φ x + ϕ N n 1 x T Λ n n log x 1 y Base DChr N 0 DChr N | m y L m m = 0 = ϕ N n 1 x T Λ n n log x
35 34 mpteq2dva φ x + ϕ N n 1 x T Λ n n log x 1 y Base DChr N 0 DChr N | m y L m m = 0 = x + ϕ N n 1 x T Λ n n log x
36 eqid y Base DChr N 0 DChr N | m y L m m = 0 = y Base DChr N 0 DChr N | m y L m m = 0
37 18 pm2.21i φ f y Base DChr N 0 DChr N | m y L m m = 0 A = 1 Z
38 1 2 3 8 9 10 36 4 5 6 37 rpvmasum2 φ x + ϕ N n 1 x T Λ n n log x 1 y Base DChr N 0 DChr N | m y L m m = 0 𝑂1
39 35 38 eqeltrrd φ x + ϕ N n 1 x T Λ n n log x 𝑂1