Metamath Proof Explorer


Theorem rpxrd

Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φ A +
Assertion rpxrd φ A *

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 1 rpred φ A
3 2 rexrd φ A *