Metamath Proof Explorer


Theorem rrgeq0

Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses rrgval.e E = RLReg R
rrgval.b B = Base R
rrgval.t · ˙ = R
rrgval.z 0 ˙ = 0 R
Assertion rrgeq0 R Ring X E Y B X · ˙ Y = 0 ˙ Y = 0 ˙

Proof

Step Hyp Ref Expression
1 rrgval.e E = RLReg R
2 rrgval.b B = Base R
3 rrgval.t · ˙ = R
4 rrgval.z 0 ˙ = 0 R
5 1 2 3 4 rrgeq0i X E Y B X · ˙ Y = 0 ˙ Y = 0 ˙
6 5 3adant1 R Ring X E Y B X · ˙ Y = 0 ˙ Y = 0 ˙
7 simp1 R Ring X E Y B R Ring
8 1 2 3 4 rrgval E = x B | y B x · ˙ y = 0 ˙ y = 0 ˙
9 8 ssrab3 E B
10 simp2 R Ring X E Y B X E
11 9 10 sselid R Ring X E Y B X B
12 2 3 4 ringrz R Ring X B X · ˙ 0 ˙ = 0 ˙
13 7 11 12 syl2anc R Ring X E Y B X · ˙ 0 ˙ = 0 ˙
14 oveq2 Y = 0 ˙ X · ˙ Y = X · ˙ 0 ˙
15 14 eqeq1d Y = 0 ˙ X · ˙ Y = 0 ˙ X · ˙ 0 ˙ = 0 ˙
16 13 15 syl5ibrcom R Ring X E Y B Y = 0 ˙ X · ˙ Y = 0 ˙
17 6 16 impbid R Ring X E Y B X · ˙ Y = 0 ˙ Y = 0 ˙