Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Left regular elements. More kinds of rings
rrgeq0i
Next ⟩
rrgeq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
rrgeq0i
Description:
Property of a left-regular element.
(Contributed by
Stefan O'Rear
, 22-Mar-2015)
Ref
Expression
Hypotheses
rrgval.e
⊢
E
=
RLReg
⁡
R
rrgval.b
⊢
B
=
Base
R
rrgval.t
⊢
·
˙
=
⋅
R
rrgval.z
⊢
0
˙
=
0
R
Assertion
rrgeq0i
⊢
X
∈
E
∧
Y
∈
B
→
X
·
˙
Y
=
0
˙
→
Y
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
rrgval.e
⊢
E
=
RLReg
⁡
R
2
rrgval.b
⊢
B
=
Base
R
3
rrgval.t
⊢
·
˙
=
⋅
R
4
rrgval.z
⊢
0
˙
=
0
R
5
1
2
3
4
isrrg
⊢
X
∈
E
↔
X
∈
B
∧
∀
y
∈
B
X
·
˙
y
=
0
˙
→
y
=
0
˙
6
5
simprbi
⊢
X
∈
E
→
∀
y
∈
B
X
·
˙
y
=
0
˙
→
y
=
0
˙
7
oveq2
⊢
y
=
Y
→
X
·
˙
y
=
X
·
˙
Y
8
7
eqeq1d
⊢
y
=
Y
→
X
·
˙
y
=
0
˙
↔
X
·
˙
Y
=
0
˙
9
eqeq1
⊢
y
=
Y
→
y
=
0
˙
↔
Y
=
0
˙
10
8
9
imbi12d
⊢
y
=
Y
→
X
·
˙
y
=
0
˙
→
y
=
0
˙
↔
X
·
˙
Y
=
0
˙
→
Y
=
0
˙
11
10
rspcv
⊢
Y
∈
B
→
∀
y
∈
B
X
·
˙
y
=
0
˙
→
y
=
0
˙
→
X
·
˙
Y
=
0
˙
→
Y
=
0
˙
12
6
11
mpan9
⊢
X
∈
E
∧
Y
∈
B
→
X
·
˙
Y
=
0
˙
→
Y
=
0
˙