Step |
Hyp |
Ref |
Expression |
1 |
|
rrgsubm.1 |
|
2 |
|
rrgsubm.2 |
|
3 |
|
rrgsubm.3 |
|
4 |
2
|
ringmgp |
|
5 |
3 4
|
syl |
|
6 |
|
eqid |
|
7 |
1 6
|
rrgss |
|
8 |
7
|
a1i |
|
9 |
|
eqid |
|
10 |
9 1 3
|
1rrg |
|
11 |
|
eqid |
|
12 |
3
|
ad2antrr |
|
13 |
|
simplr |
|
14 |
7 13
|
sselid |
|
15 |
|
simpr |
|
16 |
7 15
|
sselid |
|
17 |
6 11 12 14 16
|
ringcld |
|
18 |
15
|
ad2antrr |
|
19 |
|
simplr |
|
20 |
13
|
ad2antrr |
|
21 |
12
|
ad2antrr |
|
22 |
16
|
ad2antrr |
|
23 |
6 11 21 22 19
|
ringcld |
|
24 |
14
|
ad2antrr |
|
25 |
6 11 21 24 22 19
|
ringassd |
|
26 |
|
simpr |
|
27 |
25 26
|
eqtr3d |
|
28 |
|
eqid |
|
29 |
1 6 11 28
|
rrgeq0i |
|
30 |
29
|
imp |
|
31 |
20 23 27 30
|
syl21anc |
|
32 |
1 6 11 28
|
rrgeq0i |
|
33 |
32
|
imp |
|
34 |
18 19 31 33
|
syl21anc |
|
35 |
34
|
ex |
|
36 |
35
|
ralrimiva |
|
37 |
1 6 11 28
|
isrrg |
|
38 |
17 36 37
|
sylanbrc |
|
39 |
38
|
anasss |
|
40 |
39
|
ralrimivva |
|
41 |
2 6
|
mgpbas |
|
42 |
2 9
|
ringidval |
|
43 |
2 11
|
mgpplusg |
|
44 |
41 42 43
|
issubm |
|
45 |
44
|
biimpar |
|
46 |
5 8 10 40 45
|
syl13anc |
|