Metamath Proof Explorer


Theorem rrgsubm

Description: The left regular elements of a ring form a submonoid of the multiplicative group. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses rrgsubm.1 E = RLReg R
rrgsubm.2 M = mulGrp R
rrgsubm.3 φ R Ring
Assertion rrgsubm φ E SubMnd M

Proof

Step Hyp Ref Expression
1 rrgsubm.1 E = RLReg R
2 rrgsubm.2 M = mulGrp R
3 rrgsubm.3 φ R Ring
4 2 ringmgp R Ring M Mnd
5 3 4 syl φ M Mnd
6 eqid Base R = Base R
7 1 6 rrgss E Base R
8 7 a1i φ E Base R
9 eqid 1 R = 1 R
10 9 1 3 1rrg φ 1 R E
11 eqid R = R
12 3 ad2antrr φ x E y E R Ring
13 simplr φ x E y E x E
14 7 13 sselid φ x E y E x Base R
15 simpr φ x E y E y E
16 7 15 sselid φ x E y E y Base R
17 6 11 12 14 16 ringcld φ x E y E x R y Base R
18 15 ad2antrr φ x E y E z Base R x R y R z = 0 R y E
19 simplr φ x E y E z Base R x R y R z = 0 R z Base R
20 13 ad2antrr φ x E y E z Base R x R y R z = 0 R x E
21 12 ad2antrr φ x E y E z Base R x R y R z = 0 R R Ring
22 16 ad2antrr φ x E y E z Base R x R y R z = 0 R y Base R
23 6 11 21 22 19 ringcld φ x E y E z Base R x R y R z = 0 R y R z Base R
24 14 ad2antrr φ x E y E z Base R x R y R z = 0 R x Base R
25 6 11 21 24 22 19 ringassd φ x E y E z Base R x R y R z = 0 R x R y R z = x R y R z
26 simpr φ x E y E z Base R x R y R z = 0 R x R y R z = 0 R
27 25 26 eqtr3d φ x E y E z Base R x R y R z = 0 R x R y R z = 0 R
28 eqid 0 R = 0 R
29 1 6 11 28 rrgeq0i x E y R z Base R x R y R z = 0 R y R z = 0 R
30 29 imp x E y R z Base R x R y R z = 0 R y R z = 0 R
31 20 23 27 30 syl21anc φ x E y E z Base R x R y R z = 0 R y R z = 0 R
32 1 6 11 28 rrgeq0i y E z Base R y R z = 0 R z = 0 R
33 32 imp y E z Base R y R z = 0 R z = 0 R
34 18 19 31 33 syl21anc φ x E y E z Base R x R y R z = 0 R z = 0 R
35 34 ex φ x E y E z Base R x R y R z = 0 R z = 0 R
36 35 ralrimiva φ x E y E z Base R x R y R z = 0 R z = 0 R
37 1 6 11 28 isrrg x R y E x R y Base R z Base R x R y R z = 0 R z = 0 R
38 17 36 37 sylanbrc φ x E y E x R y E
39 38 anasss φ x E y E x R y E
40 39 ralrimivva φ x E y E x R y E
41 2 6 mgpbas Base R = Base M
42 2 9 ringidval 1 R = 0 M
43 2 11 mgpplusg R = + M
44 41 42 43 issubm M Mnd E SubMnd M E Base R 1 R E x E y E x R y E
45 44 biimpar M Mnd E Base R 1 R E x E y E x R y E E SubMnd M
46 5 8 10 40 45 syl13anc φ E SubMnd M