Metamath Proof Explorer


Theorem rrncms

Description: Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrncms.1 X = I
Assertion rrncms I Fin n I CMet X

Proof

Step Hyp Ref Expression
1 rrncms.1 X = I
2 eqid abs 2 = abs 2
3 eqid MetOpen n I = MetOpen n I
4 simpll I Fin f Cau n I f : X I Fin
5 simplr I Fin f Cau n I f : X f Cau n I
6 simpr I Fin f Cau n I f : X f : X
7 eqid m I t f t m = m I t f t m
8 1 2 3 4 5 6 7 rrncmslem I Fin f Cau n I f : X f dom t MetOpen n I
9 8 ex I Fin f Cau n I f : X f dom t MetOpen n I
10 9 ralrimiva I Fin f Cau n I f : X f dom t MetOpen n I
11 nnuz = 1
12 1zzd I Fin 1
13 1 rrnmet I Fin n I Met X
14 11 3 12 13 iscmet3 I Fin n I CMet X f Cau n I f : X f dom t MetOpen n I
15 10 14 mpbird I Fin n I CMet X