| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnval.1 |
|
| 2 |
|
rrndstprj1.1 |
|
| 3 |
|
rrncms.3 |
|
| 4 |
|
rrncms.4 |
|
| 5 |
|
rrncms.5 |
|
| 6 |
|
rrncms.6 |
|
| 7 |
|
rrncms.7 |
|
| 8 |
|
lmrel |
|
| 9 |
|
fvex |
|
| 10 |
9 7
|
fnmpti |
|
| 11 |
10
|
a1i |
|
| 12 |
|
nnuz |
|
| 13 |
|
1zzd |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
fveq1d |
|
| 16 |
|
eqid |
|
| 17 |
|
fvex |
|
| 18 |
15 16 17
|
fvmpt |
|
| 19 |
18
|
adantl |
|
| 20 |
6
|
ffvelcdmda |
|
| 21 |
20 1
|
eleqtrdi |
|
| 22 |
|
elmapi |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
ffvelcdmda |
|
| 25 |
24
|
an32s |
|
| 26 |
19 25
|
eqeltrd |
|
| 27 |
26
|
recnd |
|
| 28 |
1
|
rrnmet |
|
| 29 |
4 28
|
syl |
|
| 30 |
|
metxmet |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
1zzd |
|
| 33 |
|
eqidd |
|
| 34 |
|
eqidd |
|
| 35 |
12 31 32 33 34 6
|
iscauf |
|
| 36 |
5 35
|
mpbid |
|
| 37 |
36
|
adantr |
|
| 38 |
4
|
ad3antrrr |
|
| 39 |
|
simpllr |
|
| 40 |
6
|
ad3antrrr |
|
| 41 |
|
eluznn |
|
| 42 |
41
|
adantll |
|
| 43 |
40 42
|
ffvelcdmd |
|
| 44 |
|
simplr |
|
| 45 |
40 44
|
ffvelcdmd |
|
| 46 |
1 2
|
rrndstprj1 |
|
| 47 |
38 39 43 45 46
|
syl22anc |
|
| 48 |
29
|
ad3antrrr |
|
| 49 |
|
metsym |
|
| 50 |
48 43 45 49
|
syl3anc |
|
| 51 |
47 50
|
breqtrd |
|
| 52 |
51
|
adantllr |
|
| 53 |
2
|
remet |
|
| 54 |
53
|
a1i |
|
| 55 |
|
simpll |
|
| 56 |
55 42 25
|
syl2anc |
|
| 57 |
6
|
ffvelcdmda |
|
| 58 |
57 1
|
eleqtrdi |
|
| 59 |
|
elmapi |
|
| 60 |
58 59
|
syl |
|
| 61 |
60
|
ffvelcdmda |
|
| 62 |
61
|
an32s |
|
| 63 |
62
|
adantr |
|
| 64 |
|
metcl |
|
| 65 |
54 56 63 64
|
syl3anc |
|
| 66 |
65
|
adantllr |
|
| 67 |
|
metcl |
|
| 68 |
48 45 43 67
|
syl3anc |
|
| 69 |
68
|
adantllr |
|
| 70 |
|
rpre |
|
| 71 |
70
|
adantl |
|
| 72 |
71
|
ad2antrr |
|
| 73 |
|
lelttr |
|
| 74 |
66 69 72 73
|
syl3anc |
|
| 75 |
52 74
|
mpand |
|
| 76 |
75
|
ralimdva |
|
| 77 |
76
|
reximdva |
|
| 78 |
77
|
ralimdva |
|
| 79 |
2
|
remetdval |
|
| 80 |
56 63 79
|
syl2anc |
|
| 81 |
42 18
|
syl |
|
| 82 |
|
fveq2 |
|
| 83 |
82
|
fveq1d |
|
| 84 |
|
fvex |
|
| 85 |
83 16 84
|
fvmpt |
|
| 86 |
85
|
ad2antlr |
|
| 87 |
81 86
|
oveq12d |
|
| 88 |
87
|
fveq2d |
|
| 89 |
80 88
|
eqtr4d |
|
| 90 |
89
|
breq1d |
|
| 91 |
90
|
ralbidva |
|
| 92 |
91
|
rexbidva |
|
| 93 |
92
|
ralbidv |
|
| 94 |
78 93
|
sylibd |
|
| 95 |
37 94
|
mpd |
|
| 96 |
|
nnex |
|
| 97 |
96
|
mptex |
|
| 98 |
97
|
a1i |
|
| 99 |
12 27 95 98
|
caucvg |
|
| 100 |
|
climdm |
|
| 101 |
99 100
|
sylib |
|
| 102 |
|
fveq2 |
|
| 103 |
102
|
mpteq2dv |
|
| 104 |
103
|
fveq2d |
|
| 105 |
|
fvex |
|
| 106 |
104 7 105
|
fvmpt |
|
| 107 |
106
|
adantl |
|
| 108 |
101 107
|
breqtrrd |
|
| 109 |
12 13 108 26
|
climrecl |
|
| 110 |
109
|
ralrimiva |
|
| 111 |
|
ffnfv |
|
| 112 |
11 110 111
|
sylanbrc |
|
| 113 |
|
reex |
|
| 114 |
|
elmapg |
|
| 115 |
113 4 114
|
sylancr |
|
| 116 |
112 115
|
mpbird |
|
| 117 |
116 1
|
eleqtrrdi |
|
| 118 |
|
1nn |
|
| 119 |
4
|
ad2antrr |
|
| 120 |
20
|
adantlr |
|
| 121 |
117
|
ad2antrr |
|
| 122 |
1
|
rrnmval |
|
| 123 |
119 120 121 122
|
syl3anc |
|
| 124 |
|
simplrr |
|
| 125 |
124
|
sumeq1d |
|
| 126 |
|
sum0 |
|
| 127 |
125 126
|
eqtrdi |
|
| 128 |
127
|
fveq2d |
|
| 129 |
123 128
|
eqtrd |
|
| 130 |
|
sqrt0 |
|
| 131 |
129 130
|
eqtrdi |
|
| 132 |
|
simplrl |
|
| 133 |
132
|
rpgt0d |
|
| 134 |
131 133
|
eqbrtrd |
|
| 135 |
134
|
ralrimiva |
|
| 136 |
|
fveq2 |
|
| 137 |
136 12
|
eqtr4di |
|
| 138 |
137
|
raleqdv |
|
| 139 |
138
|
rspcev |
|
| 140 |
118 135 139
|
sylancr |
|
| 141 |
140
|
expr |
|
| 142 |
|
1zzd |
|
| 143 |
|
simprl |
|
| 144 |
|
simprr |
|
| 145 |
4
|
adantr |
|
| 146 |
|
hashnncl |
|
| 147 |
145 146
|
syl |
|
| 148 |
144 147
|
mpbird |
|
| 149 |
148
|
nnrpd |
|
| 150 |
149
|
rpsqrtcld |
|
| 151 |
143 150
|
rpdivcld |
|
| 152 |
151
|
adantr |
|
| 153 |
18
|
adantl |
|
| 154 |
108
|
adantlr |
|
| 155 |
12 142 152 153 154
|
climi2 |
|
| 156 |
|
1z |
|
| 157 |
12
|
rexuz3 |
|
| 158 |
156 157
|
ax-mp |
|
| 159 |
25
|
adantllr |
|
| 160 |
109
|
adantlr |
|
| 161 |
160
|
adantr |
|
| 162 |
2
|
remetdval |
|
| 163 |
159 161 162
|
syl2anc |
|
| 164 |
163
|
breq1d |
|
| 165 |
41 164
|
sylan2 |
|
| 166 |
165
|
anassrs |
|
| 167 |
166
|
ralbidva |
|
| 168 |
167
|
rexbidva |
|
| 169 |
158 168
|
bitr3id |
|
| 170 |
155 169
|
mpbird |
|
| 171 |
170
|
ralrimiva |
|
| 172 |
12
|
rexuz3 |
|
| 173 |
156 172
|
ax-mp |
|
| 174 |
|
rexfiuz |
|
| 175 |
145 174
|
syl |
|
| 176 |
173 175
|
bitrid |
|
| 177 |
171 176
|
mpbird |
|
| 178 |
4
|
ad2antrr |
|
| 179 |
|
simplrr |
|
| 180 |
|
eldifsn |
|
| 181 |
178 179 180
|
sylanbrc |
|
| 182 |
6
|
adantr |
|
| 183 |
182
|
ffvelcdmda |
|
| 184 |
117
|
ad2antrr |
|
| 185 |
151
|
adantr |
|
| 186 |
1 2
|
rrndstprj2 |
|
| 187 |
186
|
expr |
|
| 188 |
181 183 184 185 187
|
syl31anc |
|
| 189 |
|
simplrl |
|
| 190 |
189
|
rpcnd |
|
| 191 |
150
|
adantr |
|
| 192 |
191
|
rpcnd |
|
| 193 |
191
|
rpne0d |
|
| 194 |
190 192 193
|
divcan1d |
|
| 195 |
194
|
breq2d |
|
| 196 |
188 195
|
sylibd |
|
| 197 |
41 196
|
sylan2 |
|
| 198 |
197
|
anassrs |
|
| 199 |
198
|
ralimdva |
|
| 200 |
199
|
reximdva |
|
| 201 |
177 200
|
mpd |
|
| 202 |
201
|
expr |
|
| 203 |
141 202
|
pm2.61dne |
|
| 204 |
203
|
ralrimiva |
|
| 205 |
3 31 12 32 33 6
|
lmmbrf |
|
| 206 |
117 204 205
|
mpbir2and |
|
| 207 |
|
releldm |
|
| 208 |
8 206 207
|
sylancr |
|