Metamath Proof Explorer


Theorem rrncmslem

Description: Lemma for rrncms . (Contributed by Jeff Madsen, 6-Jun-2014) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses rrnval.1 X = I
rrndstprj1.1 M = abs 2
rrncms.3 J = MetOpen n I
rrncms.4 φ I Fin
rrncms.5 φ F Cau n I
rrncms.6 φ F : X
rrncms.7 P = m I t F t m
Assertion rrncmslem φ F dom t J

Proof

Step Hyp Ref Expression
1 rrnval.1 X = I
2 rrndstprj1.1 M = abs 2
3 rrncms.3 J = MetOpen n I
4 rrncms.4 φ I Fin
5 rrncms.5 φ F Cau n I
6 rrncms.6 φ F : X
7 rrncms.7 P = m I t F t m
8 lmrel Rel t J
9 fvex t F t m V
10 9 7 fnmpti P Fn I
11 10 a1i φ P Fn I
12 nnuz = 1
13 1zzd φ n I 1
14 fveq2 t = k F t = F k
15 14 fveq1d t = k F t n = F k n
16 eqid t F t n = t F t n
17 fvex F k n V
18 15 16 17 fvmpt k t F t n k = F k n
19 18 adantl φ n I k t F t n k = F k n
20 6 ffvelrnda φ k F k X
21 20 1 eleqtrdi φ k F k I
22 elmapi F k I F k : I
23 21 22 syl φ k F k : I
24 23 ffvelrnda φ k n I F k n
25 24 an32s φ n I k F k n
26 19 25 eqeltrd φ n I k t F t n k
27 26 recnd φ n I k t F t n k
28 1 rrnmet I Fin n I Met X
29 4 28 syl φ n I Met X
30 metxmet n I Met X n I ∞Met X
31 29 30 syl φ n I ∞Met X
32 1zzd φ 1
33 eqidd φ k F k = F k
34 eqidd φ j F j = F j
35 12 31 32 33 34 6 iscauf φ F Cau n I x + j k j F j n I F k < x
36 5 35 mpbid φ x + j k j F j n I F k < x
37 36 adantr φ n I x + j k j F j n I F k < x
38 4 ad3antrrr φ n I j k j I Fin
39 simpllr φ n I j k j n I
40 6 ad3antrrr φ n I j k j F : X
41 eluznn j k j k
42 41 adantll φ n I j k j k
43 40 42 ffvelrnd φ n I j k j F k X
44 simplr φ n I j k j j
45 40 44 ffvelrnd φ n I j k j F j X
46 1 2 rrndstprj1 I Fin n I F k X F j X F k n M F j n F k n I F j
47 38 39 43 45 46 syl22anc φ n I j k j F k n M F j n F k n I F j
48 29 ad3antrrr φ n I j k j n I Met X
49 metsym n I Met X F k X F j X F k n I F j = F j n I F k
50 48 43 45 49 syl3anc φ n I j k j F k n I F j = F j n I F k
51 47 50 breqtrd φ n I j k j F k n M F j n F j n I F k
52 51 adantllr φ n I x + j k j F k n M F j n F j n I F k
53 2 remet M Met
54 53 a1i φ n I j k j M Met
55 simpll φ n I j k j φ n I
56 55 42 25 syl2anc φ n I j k j F k n
57 6 ffvelrnda φ j F j X
58 57 1 eleqtrdi φ j F j I
59 elmapi F j I F j : I
60 58 59 syl φ j F j : I
61 60 ffvelrnda φ j n I F j n
62 61 an32s φ n I j F j n
63 62 adantr φ n I j k j F j n
64 metcl M Met F k n F j n F k n M F j n
65 54 56 63 64 syl3anc φ n I j k j F k n M F j n
66 65 adantllr φ n I x + j k j F k n M F j n
67 metcl n I Met X F j X F k X F j n I F k
68 48 45 43 67 syl3anc φ n I j k j F j n I F k
69 68 adantllr φ n I x + j k j F j n I F k
70 rpre x + x
71 70 adantl φ n I x + x
72 71 ad2antrr φ n I x + j k j x
73 lelttr F k n M F j n F j n I F k x F k n M F j n F j n I F k F j n I F k < x F k n M F j n < x
74 66 69 72 73 syl3anc φ n I x + j k j F k n M F j n F j n I F k F j n I F k < x F k n M F j n < x
75 52 74 mpand φ n I x + j k j F j n I F k < x F k n M F j n < x
76 75 ralimdva φ n I x + j k j F j n I F k < x k j F k n M F j n < x
77 76 reximdva φ n I x + j k j F j n I F k < x j k j F k n M F j n < x
78 77 ralimdva φ n I x + j k j F j n I F k < x x + j k j F k n M F j n < x
79 2 remetdval F k n F j n F k n M F j n = F k n F j n
80 56 63 79 syl2anc φ n I j k j F k n M F j n = F k n F j n
81 42 18 syl φ n I j k j t F t n k = F k n
82 fveq2 t = j F t = F j
83 82 fveq1d t = j F t n = F j n
84 fvex F j n V
85 83 16 84 fvmpt j t F t n j = F j n
86 85 ad2antlr φ n I j k j t F t n j = F j n
87 81 86 oveq12d φ n I j k j t F t n k t F t n j = F k n F j n
88 87 fveq2d φ n I j k j t F t n k t F t n j = F k n F j n
89 80 88 eqtr4d φ n I j k j F k n M F j n = t F t n k t F t n j
90 89 breq1d φ n I j k j F k n M F j n < x t F t n k t F t n j < x
91 90 ralbidva φ n I j k j F k n M F j n < x k j t F t n k t F t n j < x
92 91 rexbidva φ n I j k j F k n M F j n < x j k j t F t n k t F t n j < x
93 92 ralbidv φ n I x + j k j F k n M F j n < x x + j k j t F t n k t F t n j < x
94 78 93 sylibd φ n I x + j k j F j n I F k < x x + j k j t F t n k t F t n j < x
95 37 94 mpd φ n I x + j k j t F t n k t F t n j < x
96 nnex V
97 96 mptex t F t n V
98 97 a1i φ n I t F t n V
99 12 27 95 98 caucvg φ n I t F t n dom
100 climdm t F t n dom t F t n t F t n
101 99 100 sylib φ n I t F t n t F t n
102 fveq2 m = n F t m = F t n
103 102 mpteq2dv m = n t F t m = t F t n
104 103 fveq2d m = n t F t m = t F t n
105 fvex t F t n V
106 104 7 105 fvmpt n I P n = t F t n
107 106 adantl φ n I P n = t F t n
108 101 107 breqtrrd φ n I t F t n P n
109 12 13 108 26 climrecl φ n I P n
110 109 ralrimiva φ n I P n
111 ffnfv P : I P Fn I n I P n
112 11 110 111 sylanbrc φ P : I
113 reex V
114 elmapg V I Fin P I P : I
115 113 4 114 sylancr φ P I P : I
116 112 115 mpbird φ P I
117 116 1 eleqtrrdi φ P X
118 1nn 1
119 4 ad2antrr φ x + I = k I Fin
120 20 adantlr φ x + I = k F k X
121 117 ad2antrr φ x + I = k P X
122 1 rrnmval I Fin F k X P X F k n I P = y I F k y P y 2
123 119 120 121 122 syl3anc φ x + I = k F k n I P = y I F k y P y 2
124 simplrr φ x + I = k I =
125 124 sumeq1d φ x + I = k y I F k y P y 2 = y F k y P y 2
126 sum0 y F k y P y 2 = 0
127 125 126 eqtrdi φ x + I = k y I F k y P y 2 = 0
128 127 fveq2d φ x + I = k y I F k y P y 2 = 0
129 123 128 eqtrd φ x + I = k F k n I P = 0
130 sqrt0 0 = 0
131 129 130 eqtrdi φ x + I = k F k n I P = 0
132 simplrl φ x + I = k x +
133 132 rpgt0d φ x + I = k 0 < x
134 131 133 eqbrtrd φ x + I = k F k n I P < x
135 134 ralrimiva φ x + I = k F k n I P < x
136 fveq2 j = 1 j = 1
137 136 12 eqtr4di j = 1 j =
138 137 raleqdv j = 1 k j F k n I P < x k F k n I P < x
139 138 rspcev 1 k F k n I P < x j k j F k n I P < x
140 118 135 139 sylancr φ x + I = j k j F k n I P < x
141 140 expr φ x + I = j k j F k n I P < x
142 1zzd φ x + I n I 1
143 simprl φ x + I x +
144 simprr φ x + I I
145 4 adantr φ x + I I Fin
146 hashnncl I Fin I I
147 145 146 syl φ x + I I I
148 144 147 mpbird φ x + I I
149 148 nnrpd φ x + I I +
150 149 rpsqrtcld φ x + I I +
151 143 150 rpdivcld φ x + I x I +
152 151 adantr φ x + I n I x I +
153 18 adantl φ x + I n I k t F t n k = F k n
154 108 adantlr φ x + I n I t F t n P n
155 12 142 152 153 154 climi2 φ x + I n I j k j F k n P n < x I
156 1z 1
157 12 rexuz3 1 j k j F k n M P n < x I j k j F k n M P n < x I
158 156 157 ax-mp j k j F k n M P n < x I j k j F k n M P n < x I
159 25 adantllr φ x + I n I k F k n
160 109 adantlr φ x + I n I P n
161 160 adantr φ x + I n I k P n
162 2 remetdval F k n P n F k n M P n = F k n P n
163 159 161 162 syl2anc φ x + I n I k F k n M P n = F k n P n
164 163 breq1d φ x + I n I k F k n M P n < x I F k n P n < x I
165 41 164 sylan2 φ x + I n I j k j F k n M P n < x I F k n P n < x I
166 165 anassrs φ x + I n I j k j F k n M P n < x I F k n P n < x I
167 166 ralbidva φ x + I n I j k j F k n M P n < x I k j F k n P n < x I
168 167 rexbidva φ x + I n I j k j F k n M P n < x I j k j F k n P n < x I
169 158 168 bitr3id φ x + I n I j k j F k n M P n < x I j k j F k n P n < x I
170 155 169 mpbird φ x + I n I j k j F k n M P n < x I
171 170 ralrimiva φ x + I n I j k j F k n M P n < x I
172 12 rexuz3 1 j k j n I F k n M P n < x I j k j n I F k n M P n < x I
173 156 172 ax-mp j k j n I F k n M P n < x I j k j n I F k n M P n < x I
174 rexfiuz I Fin j k j n I F k n M P n < x I n I j k j F k n M P n < x I
175 145 174 syl φ x + I j k j n I F k n M P n < x I n I j k j F k n M P n < x I
176 173 175 syl5bb φ x + I j k j n I F k n M P n < x I n I j k j F k n M P n < x I
177 171 176 mpbird φ x + I j k j n I F k n M P n < x I
178 4 ad2antrr φ x + I k I Fin
179 simplrr φ x + I k I
180 eldifsn I Fin I Fin I
181 178 179 180 sylanbrc φ x + I k I Fin
182 6 adantr φ x + I F : X
183 182 ffvelrnda φ x + I k F k X
184 117 ad2antrr φ x + I k P X
185 151 adantr φ x + I k x I +
186 1 2 rrndstprj2 I Fin F k X P X x I + n I F k n M P n < x I F k n I P < x I I
187 186 expr I Fin F k X P X x I + n I F k n M P n < x I F k n I P < x I I
188 181 183 184 185 187 syl31anc φ x + I k n I F k n M P n < x I F k n I P < x I I
189 simplrl φ x + I k x +
190 189 rpcnd φ x + I k x
191 150 adantr φ x + I k I +
192 191 rpcnd φ x + I k I
193 191 rpne0d φ x + I k I 0
194 190 192 193 divcan1d φ x + I k x I I = x
195 194 breq2d φ x + I k F k n I P < x I I F k n I P < x
196 188 195 sylibd φ x + I k n I F k n M P n < x I F k n I P < x
197 41 196 sylan2 φ x + I j k j n I F k n M P n < x I F k n I P < x
198 197 anassrs φ x + I j k j n I F k n M P n < x I F k n I P < x
199 198 ralimdva φ x + I j k j n I F k n M P n < x I k j F k n I P < x
200 199 reximdva φ x + I j k j n I F k n M P n < x I j k j F k n I P < x
201 177 200 mpd φ x + I j k j F k n I P < x
202 201 expr φ x + I j k j F k n I P < x
203 141 202 pm2.61dne φ x + j k j F k n I P < x
204 203 ralrimiva φ x + j k j F k n I P < x
205 3 31 12 32 33 6 lmmbrf φ F t J P P X x + j k j F k n I P < x
206 117 204 205 mpbir2and φ F t J P
207 releldm Rel t J F t J P F dom t J
208 8 206 207 sylancr φ F dom t J