Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
|
2 |
|
rrndstprj1.1 |
|
3 |
|
simpll |
|
4 |
|
simprl |
|
5 |
4 1
|
eleqtrdi |
|
6 |
|
elmapi |
|
7 |
5 6
|
syl |
|
8 |
7
|
ffvelrnda |
|
9 |
|
simprr |
|
10 |
9 1
|
eleqtrdi |
|
11 |
|
elmapi |
|
12 |
10 11
|
syl |
|
13 |
12
|
ffvelrnda |
|
14 |
8 13
|
resubcld |
|
15 |
14
|
resqcld |
|
16 |
14
|
sqge0d |
|
17 |
|
fveq2 |
|
18 |
|
fveq2 |
|
19 |
17 18
|
oveq12d |
|
20 |
19
|
oveq1d |
|
21 |
|
simplr |
|
22 |
3 15 16 20 21
|
fsumge1 |
|
23 |
7 21
|
ffvelrnd |
|
24 |
12 21
|
ffvelrnd |
|
25 |
23 24
|
resubcld |
|
26 |
|
absresq |
|
27 |
25 26
|
syl |
|
28 |
3 15
|
fsumrecl |
|
29 |
3 15 16
|
fsumge0 |
|
30 |
|
resqrtth |
|
31 |
28 29 30
|
syl2anc |
|
32 |
22 27 31
|
3brtr4d |
|
33 |
25
|
recnd |
|
34 |
33
|
abscld |
|
35 |
28 29
|
resqrtcld |
|
36 |
33
|
absge0d |
|
37 |
28 29
|
sqrtge0d |
|
38 |
34 35 36 37
|
le2sqd |
|
39 |
32 38
|
mpbird |
|
40 |
2
|
remetdval |
|
41 |
23 24 40
|
syl2anc |
|
42 |
1
|
rrnmval |
|
43 |
42
|
3expb |
|
44 |
43
|
adantlr |
|
45 |
39 41 44
|
3brtr4d |
|