Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
|
2 |
|
rrndstprj1.1 |
|
3 |
|
simpl1 |
|
4 |
3
|
eldifad |
|
5 |
|
simpl2 |
|
6 |
|
simpl3 |
|
7 |
1
|
rrnmval |
|
8 |
4 5 6 7
|
syl3anc |
|
9 |
|
eldifsni |
|
10 |
3 9
|
syl |
|
11 |
5 1
|
eleqtrdi |
|
12 |
|
elmapi |
|
13 |
11 12
|
syl |
|
14 |
13
|
ffvelrnda |
|
15 |
6 1
|
eleqtrdi |
|
16 |
|
elmapi |
|
17 |
15 16
|
syl |
|
18 |
17
|
ffvelrnda |
|
19 |
14 18
|
resubcld |
|
20 |
19
|
resqcld |
|
21 |
|
simprl |
|
22 |
21
|
rpred |
|
23 |
22
|
resqcld |
|
24 |
23
|
adantr |
|
25 |
|
absresq |
|
26 |
19 25
|
syl |
|
27 |
2
|
remetdval |
|
28 |
14 18 27
|
syl2anc |
|
29 |
|
simprr |
|
30 |
|
fveq2 |
|
31 |
|
fveq2 |
|
32 |
30 31
|
oveq12d |
|
33 |
32
|
breq1d |
|
34 |
33
|
rspccva |
|
35 |
29 34
|
sylan |
|
36 |
28 35
|
eqbrtrrd |
|
37 |
19
|
recnd |
|
38 |
37
|
abscld |
|
39 |
22
|
adantr |
|
40 |
37
|
absge0d |
|
41 |
21
|
rpge0d |
|
42 |
41
|
adantr |
|
43 |
38 39 40 42
|
lt2sqd |
|
44 |
36 43
|
mpbid |
|
45 |
26 44
|
eqbrtrrd |
|
46 |
4 10 20 24 45
|
fsumlt |
|
47 |
4 20
|
fsumrecl |
|
48 |
19
|
sqge0d |
|
49 |
4 20 48
|
fsumge0 |
|
50 |
|
resqrtth |
|
51 |
47 49 50
|
syl2anc |
|
52 |
|
hashnncl |
|
53 |
4 52
|
syl |
|
54 |
10 53
|
mpbird |
|
55 |
54
|
nnrpd |
|
56 |
55
|
rpred |
|
57 |
55
|
rpge0d |
|
58 |
|
resqrtth |
|
59 |
56 57 58
|
syl2anc |
|
60 |
59
|
oveq2d |
|
61 |
23
|
recnd |
|
62 |
55
|
rpcnd |
|
63 |
61 62
|
mulcomd |
|
64 |
60 63
|
eqtrd |
|
65 |
21
|
rpcnd |
|
66 |
55
|
rpsqrtcld |
|
67 |
66
|
rpcnd |
|
68 |
65 67
|
sqmuld |
|
69 |
|
fsumconst |
|
70 |
4 61 69
|
syl2anc |
|
71 |
64 68 70
|
3eqtr4d |
|
72 |
46 51 71
|
3brtr4d |
|
73 |
47 49
|
resqrtcld |
|
74 |
21 66
|
rpmulcld |
|
75 |
74
|
rpred |
|
76 |
47 49
|
sqrtge0d |
|
77 |
74
|
rpge0d |
|
78 |
73 75 76 77
|
lt2sqd |
|
79 |
72 78
|
mpbird |
|
80 |
8 79
|
eqbrtrd |
|