Metamath Proof Explorer


Theorem rrndstprj2

Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses rrnval.1 X = I
rrndstprj1.1 M = abs 2
Assertion rrndstprj2 I Fin F X G X R + n I F n M G n < R F n I G < R I

Proof

Step Hyp Ref Expression
1 rrnval.1 X = I
2 rrndstprj1.1 M = abs 2
3 simpl1 I Fin F X G X R + n I F n M G n < R I Fin
4 3 eldifad I Fin F X G X R + n I F n M G n < R I Fin
5 simpl2 I Fin F X G X R + n I F n M G n < R F X
6 simpl3 I Fin F X G X R + n I F n M G n < R G X
7 1 rrnmval I Fin F X G X F n I G = k I F k G k 2
8 4 5 6 7 syl3anc I Fin F X G X R + n I F n M G n < R F n I G = k I F k G k 2
9 eldifsni I Fin I
10 3 9 syl I Fin F X G X R + n I F n M G n < R I
11 5 1 eleqtrdi I Fin F X G X R + n I F n M G n < R F I
12 elmapi F I F : I
13 11 12 syl I Fin F X G X R + n I F n M G n < R F : I
14 13 ffvelrnda I Fin F X G X R + n I F n M G n < R k I F k
15 6 1 eleqtrdi I Fin F X G X R + n I F n M G n < R G I
16 elmapi G I G : I
17 15 16 syl I Fin F X G X R + n I F n M G n < R G : I
18 17 ffvelrnda I Fin F X G X R + n I F n M G n < R k I G k
19 14 18 resubcld I Fin F X G X R + n I F n M G n < R k I F k G k
20 19 resqcld I Fin F X G X R + n I F n M G n < R k I F k G k 2
21 simprl I Fin F X G X R + n I F n M G n < R R +
22 21 rpred I Fin F X G X R + n I F n M G n < R R
23 22 resqcld I Fin F X G X R + n I F n M G n < R R 2
24 23 adantr I Fin F X G X R + n I F n M G n < R k I R 2
25 absresq F k G k F k G k 2 = F k G k 2
26 19 25 syl I Fin F X G X R + n I F n M G n < R k I F k G k 2 = F k G k 2
27 2 remetdval F k G k F k M G k = F k G k
28 14 18 27 syl2anc I Fin F X G X R + n I F n M G n < R k I F k M G k = F k G k
29 simprr I Fin F X G X R + n I F n M G n < R n I F n M G n < R
30 fveq2 n = k F n = F k
31 fveq2 n = k G n = G k
32 30 31 oveq12d n = k F n M G n = F k M G k
33 32 breq1d n = k F n M G n < R F k M G k < R
34 33 rspccva n I F n M G n < R k I F k M G k < R
35 29 34 sylan I Fin F X G X R + n I F n M G n < R k I F k M G k < R
36 28 35 eqbrtrrd I Fin F X G X R + n I F n M G n < R k I F k G k < R
37 19 recnd I Fin F X G X R + n I F n M G n < R k I F k G k
38 37 abscld I Fin F X G X R + n I F n M G n < R k I F k G k
39 22 adantr I Fin F X G X R + n I F n M G n < R k I R
40 37 absge0d I Fin F X G X R + n I F n M G n < R k I 0 F k G k
41 21 rpge0d I Fin F X G X R + n I F n M G n < R 0 R
42 41 adantr I Fin F X G X R + n I F n M G n < R k I 0 R
43 38 39 40 42 lt2sqd I Fin F X G X R + n I F n M G n < R k I F k G k < R F k G k 2 < R 2
44 36 43 mpbid I Fin F X G X R + n I F n M G n < R k I F k G k 2 < R 2
45 26 44 eqbrtrrd I Fin F X G X R + n I F n M G n < R k I F k G k 2 < R 2
46 4 10 20 24 45 fsumlt I Fin F X G X R + n I F n M G n < R k I F k G k 2 < k I R 2
47 4 20 fsumrecl I Fin F X G X R + n I F n M G n < R k I F k G k 2
48 19 sqge0d I Fin F X G X R + n I F n M G n < R k I 0 F k G k 2
49 4 20 48 fsumge0 I Fin F X G X R + n I F n M G n < R 0 k I F k G k 2
50 resqrtth k I F k G k 2 0 k I F k G k 2 k I F k G k 2 2 = k I F k G k 2
51 47 49 50 syl2anc I Fin F X G X R + n I F n M G n < R k I F k G k 2 2 = k I F k G k 2
52 hashnncl I Fin I I
53 4 52 syl I Fin F X G X R + n I F n M G n < R I I
54 10 53 mpbird I Fin F X G X R + n I F n M G n < R I
55 54 nnrpd I Fin F X G X R + n I F n M G n < R I +
56 55 rpred I Fin F X G X R + n I F n M G n < R I
57 55 rpge0d I Fin F X G X R + n I F n M G n < R 0 I
58 resqrtth I 0 I I 2 = I
59 56 57 58 syl2anc I Fin F X G X R + n I F n M G n < R I 2 = I
60 59 oveq2d I Fin F X G X R + n I F n M G n < R R 2 I 2 = R 2 I
61 23 recnd I Fin F X G X R + n I F n M G n < R R 2
62 55 rpcnd I Fin F X G X R + n I F n M G n < R I
63 61 62 mulcomd I Fin F X G X R + n I F n M G n < R R 2 I = I R 2
64 60 63 eqtrd I Fin F X G X R + n I F n M G n < R R 2 I 2 = I R 2
65 21 rpcnd I Fin F X G X R + n I F n M G n < R R
66 55 rpsqrtcld I Fin F X G X R + n I F n M G n < R I +
67 66 rpcnd I Fin F X G X R + n I F n M G n < R I
68 65 67 sqmuld I Fin F X G X R + n I F n M G n < R R I 2 = R 2 I 2
69 fsumconst I Fin R 2 k I R 2 = I R 2
70 4 61 69 syl2anc I Fin F X G X R + n I F n M G n < R k I R 2 = I R 2
71 64 68 70 3eqtr4d I Fin F X G X R + n I F n M G n < R R I 2 = k I R 2
72 46 51 71 3brtr4d I Fin F X G X R + n I F n M G n < R k I F k G k 2 2 < R I 2
73 47 49 resqrtcld I Fin F X G X R + n I F n M G n < R k I F k G k 2
74 21 66 rpmulcld I Fin F X G X R + n I F n M G n < R R I +
75 74 rpred I Fin F X G X R + n I F n M G n < R R I
76 47 49 sqrtge0d I Fin F X G X R + n I F n M G n < R 0 k I F k G k 2
77 74 rpge0d I Fin F X G X R + n I F n M G n < R 0 R I
78 73 75 76 77 lt2sqd I Fin F X G X R + n I F n M G n < R k I F k G k 2 < R I k I F k G k 2 2 < R I 2
79 72 78 mpbird I Fin F X G X R + n I F n M G n < R k I F k G k 2 < R I
80 8 79 eqbrtrd I Fin F X G X R + n I F n M G n < R F n I G < R I