Metamath Proof Explorer


Theorem rrnequiv

Description: The supremum metric on RR ^ I is equivalent to the Rn metric. (Contributed by Jeff Madsen, 15-Sep-2015)

Ref Expression
Hypotheses rrnequiv.y Y = fld 𝑠 𝑠 I
rrnequiv.d D = dist Y
rrnequiv.1 X = I
rrnequiv.i φ I Fin
Assertion rrnequiv φ F X G X F D G F n I G F n I G I F D G

Proof

Step Hyp Ref Expression
1 rrnequiv.y Y = fld 𝑠 𝑠 I
2 rrnequiv.d D = dist Y
3 rrnequiv.1 X = I
4 rrnequiv.i φ I Fin
5 ovex fld 𝑠 V
6 4 adantr φ F X G X I Fin
7 reex V
8 eqid fld 𝑠 = fld 𝑠
9 eqid Scalar fld = Scalar fld
10 8 9 resssca V Scalar fld = Scalar fld 𝑠
11 7 10 ax-mp Scalar fld = Scalar fld 𝑠
12 1 11 pwsval fld 𝑠 V I Fin Y = Scalar fld 𝑠 I × fld 𝑠
13 5 6 12 sylancr φ F X G X Y = Scalar fld 𝑠 I × fld 𝑠
14 13 fveq2d φ F X G X dist Y = dist Scalar fld 𝑠 I × fld 𝑠
15 2 14 syl5eq φ F X G X D = dist Scalar fld 𝑠 I × fld 𝑠
16 15 oveqd φ F X G X F D G = F dist Scalar fld 𝑠 I × fld 𝑠 G
17 fconstmpt I × fld 𝑠 = k I fld 𝑠
18 17 oveq2i Scalar fld 𝑠 I × fld 𝑠 = Scalar fld 𝑠 k I fld 𝑠
19 eqid Base Scalar fld 𝑠 I × fld 𝑠 = Base Scalar fld 𝑠 I × fld 𝑠
20 fvexd φ F X G X Scalar fld V
21 5 a1i φ F X G X k I fld 𝑠 V
22 21 ralrimiva φ F X G X k I fld 𝑠 V
23 simprl φ F X G X F X
24 ax-resscn
25 cnfldbas = Base fld
26 8 25 ressbas2 = Base fld 𝑠
27 24 26 ax-mp = Base fld 𝑠
28 1 27 pwsbas fld 𝑠 V I Fin I = Base Y
29 5 6 28 sylancr φ F X G X I = Base Y
30 13 fveq2d φ F X G X Base Y = Base Scalar fld 𝑠 I × fld 𝑠
31 29 30 eqtrd φ F X G X I = Base Scalar fld 𝑠 I × fld 𝑠
32 3 31 syl5eq φ F X G X X = Base Scalar fld 𝑠 I × fld 𝑠
33 23 32 eleqtrd φ F X G X F Base Scalar fld 𝑠 I × fld 𝑠
34 simprr φ F X G X G X
35 34 32 eleqtrd φ F X G X G Base Scalar fld 𝑠 I × fld 𝑠
36 cnfldds abs = dist fld
37 8 36 ressds V abs = dist fld 𝑠
38 7 37 ax-mp abs = dist fld 𝑠
39 38 reseq1i abs 2 = dist fld 𝑠 2
40 eqid dist Scalar fld 𝑠 I × fld 𝑠 = dist Scalar fld 𝑠 I × fld 𝑠
41 18 19 20 6 22 33 35 27 39 40 prdsdsval3 φ F X G X F dist Scalar fld 𝑠 I × fld 𝑠 G = sup ran k I F k abs 2 G k 0 * <
42 16 41 eqtrd φ F X G X F D G = sup ran k I F k abs 2 G k 0 * <
43 eqid abs 2 = abs 2
44 3 43 rrndstprj1 I Fin k I F X G X F k abs 2 G k F n I G
45 44 an32s I Fin F X G X k I F k abs 2 G k F n I G
46 4 45 sylanl1 φ F X G X k I F k abs 2 G k F n I G
47 46 ralrimiva φ F X G X k I F k abs 2 G k F n I G
48 ovex F k abs 2 G k V
49 48 rgenw k I F k abs 2 G k V
50 eqid k I F k abs 2 G k = k I F k abs 2 G k
51 breq1 z = F k abs 2 G k z F n I G F k abs 2 G k F n I G
52 50 51 ralrnmptw k I F k abs 2 G k V z ran k I F k abs 2 G k z F n I G k I F k abs 2 G k F n I G
53 49 52 ax-mp z ran k I F k abs 2 G k z F n I G k I F k abs 2 G k F n I G
54 47 53 sylibr φ F X G X z ran k I F k abs 2 G k z F n I G
55 3 rrnmet I Fin n I Met X
56 6 55 syl φ F X G X n I Met X
57 metge0 n I Met X F X G X 0 F n I G
58 56 23 34 57 syl3anc φ F X G X 0 F n I G
59 elsni z 0 z = 0
60 59 breq1d z 0 z F n I G 0 F n I G
61 58 60 syl5ibrcom φ F X G X z 0 z F n I G
62 61 ralrimiv φ F X G X z 0 z F n I G
63 ralunb z ran k I F k abs 2 G k 0 z F n I G z ran k I F k abs 2 G k z F n I G z 0 z F n I G
64 54 62 63 sylanbrc φ F X G X z ran k I F k abs 2 G k 0 z F n I G
65 18 19 20 6 22 27 33 prdsbascl φ F X G X k I F k
66 65 r19.21bi φ F X G X k I F k
67 18 19 20 6 22 27 35 prdsbascl φ F X G X k I G k
68 67 r19.21bi φ F X G X k I G k
69 43 remet abs 2 Met
70 metcl abs 2 Met F k G k F k abs 2 G k
71 69 70 mp3an1 F k G k F k abs 2 G k
72 66 68 71 syl2anc φ F X G X k I F k abs 2 G k
73 72 fmpttd φ F X G X k I F k abs 2 G k : I
74 73 frnd φ F X G X ran k I F k abs 2 G k
75 ressxr *
76 74 75 sstrdi φ F X G X ran k I F k abs 2 G k *
77 0xr 0 *
78 77 a1i φ F X G X 0 *
79 78 snssd φ F X G X 0 *
80 76 79 unssd φ F X G X ran k I F k abs 2 G k 0 *
81 metcl n I Met X F X G X F n I G
82 56 23 34 81 syl3anc φ F X G X F n I G
83 75 82 sselid φ F X G X F n I G *
84 supxrleub ran k I F k abs 2 G k 0 * F n I G * sup ran k I F k abs 2 G k 0 * < F n I G z ran k I F k abs 2 G k 0 z F n I G
85 80 83 84 syl2anc φ F X G X sup ran k I F k abs 2 G k 0 * < F n I G z ran k I F k abs 2 G k 0 z F n I G
86 64 85 mpbird φ F X G X sup ran k I F k abs 2 G k 0 * < F n I G
87 42 86 eqbrtrd φ F X G X F D G F n I G
88 rzal I = k I F k = G k
89 23 3 eleqtrdi φ F X G X F I
90 elmapi F I F : I
91 ffn F : I F Fn I
92 89 90 91 3syl φ F X G X F Fn I
93 34 3 eleqtrdi φ F X G X G I
94 elmapi G I G : I
95 ffn G : I G Fn I
96 93 94 95 3syl φ F X G X G Fn I
97 eqfnfv F Fn I G Fn I F = G k I F k = G k
98 92 96 97 syl2anc φ F X G X F = G k I F k = G k
99 88 98 syl5ibr φ F X G X I = F = G
100 99 imp φ F X G X I = F = G
101 100 oveq1d φ F X G X I = F n I G = G n I G
102 met0 n I Met X G X G n I G = 0
103 56 34 102 syl2anc φ F X G X G n I G = 0
104 hashcl I Fin I 0
105 6 104 syl φ F X G X I 0
106 105 nn0red φ F X G X I
107 105 nn0ge0d φ F X G X 0 I
108 106 107 resqrtcld φ F X G X I
109 1 2 3 repwsmet I Fin D Met X
110 6 109 syl φ F X G X D Met X
111 metcl D Met X F X G X F D G
112 110 23 34 111 syl3anc φ F X G X F D G
113 106 107 sqrtge0d φ F X G X 0 I
114 metge0 D Met X F X G X 0 F D G
115 110 23 34 114 syl3anc φ F X G X 0 F D G
116 108 112 113 115 mulge0d φ F X G X 0 I F D G
117 103 116 eqbrtrd φ F X G X G n I G I F D G
118 117 adantr φ F X G X I = G n I G I F D G
119 101 118 eqbrtrd φ F X G X I = F n I G I F D G
120 82 adantr φ F X G X I r + F n I G
121 108 112 remulcld φ F X G X I F D G
122 121 adantr φ F X G X I r + I F D G
123 rpre r + r
124 123 ad2antll φ F X G X I r + r
125 122 124 readdcld φ F X G X I r + I F D G + r
126 6 adantr φ F X G X I r + I Fin
127 simprl φ F X G X I r + I
128 eldifsn I Fin I Fin I
129 126 127 128 sylanbrc φ F X G X I r + I Fin
130 23 adantr φ F X G X I r + F X
131 34 adantr φ F X G X I r + G X
132 112 adantr φ F X G X I r + F D G
133 simprr φ F X G X I r + r +
134 hashnncl I Fin I I
135 126 134 syl φ F X G X I r + I I
136 127 135 mpbird φ F X G X I r + I
137 136 nnrpd φ F X G X I r + I +
138 137 rpsqrtcld φ F X G X I r + I +
139 133 138 rpdivcld φ F X G X I r + r I +
140 139 rpred φ F X G X I r + r I
141 132 140 readdcld φ F X G X I r + F D G + r I
142 0red φ F X G X I r + 0
143 115 adantr φ F X G X I r + 0 F D G
144 132 139 ltaddrpd φ F X G X I r + F D G < F D G + r I
145 142 132 141 143 144 lelttrd φ F X G X I r + 0 < F D G + r I
146 141 145 elrpd φ F X G X I r + F D G + r I +
147 72 adantlr φ F X G X I r + k I F k abs 2 G k
148 132 adantr φ F X G X I r + k I F D G
149 141 adantr φ F X G X I r + k I F D G + r I
150 80 ad2antrr φ F X G X I r + k I ran k I F k abs 2 G k 0 *
151 ssun1 ran k I F k abs 2 G k ran k I F k abs 2 G k 0
152 simpr φ F X G X I r + k I k I
153 50 elrnmpt1 k I F k abs 2 G k V F k abs 2 G k ran k I F k abs 2 G k
154 152 48 153 sylancl φ F X G X I r + k I F k abs 2 G k ran k I F k abs 2 G k
155 151 154 sselid φ F X G X I r + k I F k abs 2 G k ran k I F k abs 2 G k 0
156 supxrub ran k I F k abs 2 G k 0 * F k abs 2 G k ran k I F k abs 2 G k 0 F k abs 2 G k sup ran k I F k abs 2 G k 0 * <
157 150 155 156 syl2anc φ F X G X I r + k I F k abs 2 G k sup ran k I F k abs 2 G k 0 * <
158 42 ad2antrr φ F X G X I r + k I F D G = sup ran k I F k abs 2 G k 0 * <
159 157 158 breqtrrd φ F X G X I r + k I F k abs 2 G k F D G
160 144 adantr φ F X G X I r + k I F D G < F D G + r I
161 147 148 149 159 160 lelttrd φ F X G X I r + k I F k abs 2 G k < F D G + r I
162 161 ralrimiva φ F X G X I r + k I F k abs 2 G k < F D G + r I
163 3 43 rrndstprj2 I Fin F X G X F D G + r I + k I F k abs 2 G k < F D G + r I F n I G < F D G + r I I
164 129 130 131 146 162 163 syl32anc φ F X G X I r + F n I G < F D G + r I I
165 132 recnd φ F X G X I r + F D G
166 140 recnd φ F X G X I r + r I
167 108 adantr φ F X G X I r + I
168 167 recnd φ F X G X I r + I
169 165 166 168 adddird φ F X G X I r + F D G + r I I = F D G I + r I I
170 165 168 mulcomd φ F X G X I r + F D G I = I F D G
171 124 recnd φ F X G X I r + r
172 138 rpne0d φ F X G X I r + I 0
173 171 168 172 divcan1d φ F X G X I r + r I I = r
174 170 173 oveq12d φ F X G X I r + F D G I + r I I = I F D G + r
175 169 174 eqtrd φ F X G X I r + F D G + r I I = I F D G + r
176 164 175 breqtrd φ F X G X I r + F n I G < I F D G + r
177 120 125 176 ltled φ F X G X I r + F n I G I F D G + r
178 177 anassrs φ F X G X I r + F n I G I F D G + r
179 178 ralrimiva φ F X G X I r + F n I G I F D G + r
180 alrple F n I G I F D G F n I G I F D G r + F n I G I F D G + r
181 82 121 180 syl2anc φ F X G X F n I G I F D G r + F n I G I F D G + r
182 181 adantr φ F X G X I F n I G I F D G r + F n I G I F D G + r
183 179 182 mpbird φ F X G X I F n I G I F D G
184 119 183 pm2.61dane φ F X G X F n I G I F D G
185 87 184 jca φ F X G X F D G F n I G F n I G I F D G