Step |
Hyp |
Ref |
Expression |
1 |
|
rrnval.1 |
|
2 |
|
simpl |
|
3 |
|
simprl |
|
4 |
3 1
|
eleqtrdi |
|
5 |
|
elmapi |
|
6 |
4 5
|
syl |
|
7 |
6
|
ffvelrnda |
|
8 |
|
simprr |
|
9 |
8 1
|
eleqtrdi |
|
10 |
|
elmapi |
|
11 |
9 10
|
syl |
|
12 |
11
|
ffvelrnda |
|
13 |
7 12
|
resubcld |
|
14 |
13
|
resqcld |
|
15 |
2 14
|
fsumrecl |
|
16 |
13
|
sqge0d |
|
17 |
2 14 16
|
fsumge0 |
|
18 |
15 17
|
resqrtcld |
|
19 |
18
|
ralrimivva |
|
20 |
|
eqid |
|
21 |
20
|
fmpo |
|
22 |
19 21
|
sylib |
|
23 |
1
|
rrnval |
|
24 |
23
|
feq1d |
|
25 |
22 24
|
mpbird |
|
26 |
|
sqrt00 |
|
27 |
15 17 26
|
syl2anc |
|
28 |
2 14 16
|
fsum00 |
|
29 |
27 28
|
bitrd |
|
30 |
13
|
recnd |
|
31 |
|
sqeq0 |
|
32 |
30 31
|
syl |
|
33 |
7
|
recnd |
|
34 |
12
|
recnd |
|
35 |
33 34
|
subeq0ad |
|
36 |
32 35
|
bitrd |
|
37 |
36
|
ralbidva |
|
38 |
29 37
|
bitrd |
|
39 |
1
|
rrnmval |
|
40 |
39
|
3expb |
|
41 |
40
|
eqeq1d |
|
42 |
6
|
ffnd |
|
43 |
11
|
ffnd |
|
44 |
|
eqfnfv |
|
45 |
42 43 44
|
syl2anc |
|
46 |
38 41 45
|
3bitr4d |
|
47 |
|
simpll |
|
48 |
7
|
adantlr |
|
49 |
|
simpr |
|
50 |
49 1
|
eleqtrdi |
|
51 |
|
elmapi |
|
52 |
50 51
|
syl |
|
53 |
52
|
ffvelrnda |
|
54 |
48 53
|
resubcld |
|
55 |
12
|
adantlr |
|
56 |
53 55
|
resubcld |
|
57 |
47 54 56
|
trirn |
|
58 |
33
|
adantlr |
|
59 |
53
|
recnd |
|
60 |
34
|
adantlr |
|
61 |
58 59 60
|
npncand |
|
62 |
61
|
oveq1d |
|
63 |
62
|
sumeq2dv |
|
64 |
63
|
fveq2d |
|
65 |
|
sqsubswap |
|
66 |
58 59 65
|
syl2anc |
|
67 |
66
|
sumeq2dv |
|
68 |
67
|
fveq2d |
|
69 |
68
|
oveq1d |
|
70 |
57 64 69
|
3brtr3d |
|
71 |
40
|
adantr |
|
72 |
1
|
rrnmval |
|
73 |
72
|
3adant3r |
|
74 |
1
|
rrnmval |
|
75 |
74
|
3adant3l |
|
76 |
73 75
|
oveq12d |
|
77 |
76
|
3expa |
|
78 |
77
|
an32s |
|
79 |
70 71 78
|
3brtr4d |
|
80 |
79
|
ralrimiva |
|
81 |
46 80
|
jca |
|
82 |
81
|
ralrimivva |
|
83 |
|
ovex |
|
84 |
1 83
|
eqeltri |
|
85 |
|
ismet |
|
86 |
84 85
|
ax-mp |
|
87 |
25 82 86
|
sylanbrc |
|