Metamath Proof Explorer


Theorem rrnmval

Description: The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrnval.1 X = I
Assertion rrnmval I Fin F X G X F n I G = k I F k G k 2

Proof

Step Hyp Ref Expression
1 rrnval.1 X = I
2 1 rrnval I Fin n I = x X , y X k I x k y k 2
3 2 3ad2ant1 I Fin F X G X n I = x X , y X k I x k y k 2
4 fveq1 x = F x k = F k
5 fveq1 y = G y k = G k
6 4 5 oveqan12d x = F y = G x k y k = F k G k
7 6 oveq1d x = F y = G x k y k 2 = F k G k 2
8 7 sumeq2sdv x = F y = G k I x k y k 2 = k I F k G k 2
9 8 fveq2d x = F y = G k I x k y k 2 = k I F k G k 2
10 9 adantl I Fin F X G X x = F y = G k I x k y k 2 = k I F k G k 2
11 simp2 I Fin F X G X F X
12 simp3 I Fin F X G X G X
13 fvexd I Fin F X G X k I F k G k 2 V
14 3 10 11 12 13 ovmpod I Fin F X G X F n I G = k I F k G k 2