| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrntotbnd.1 |
|
| 2 |
|
rrntotbnd.2 |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4 1
|
repwsmet |
|
| 6 |
1
|
rrnmet |
|
| 7 |
|
hashcl |
|
| 8 |
|
nn0re |
|
| 9 |
|
nn0ge0 |
|
| 10 |
8 9
|
resqrtcld |
|
| 11 |
7 10
|
syl |
|
| 12 |
8 9
|
sqrtge0d |
|
| 13 |
7 12
|
syl |
|
| 14 |
11 13
|
ge0p1rpd |
|
| 15 |
|
1rp |
|
| 16 |
15
|
a1i |
|
| 17 |
|
metcl |
|
| 18 |
17
|
3expb |
|
| 19 |
6 18
|
sylan |
|
| 20 |
11
|
adantr |
|
| 21 |
5
|
adantr |
|
| 22 |
|
simprl |
|
| 23 |
|
simprr |
|
| 24 |
|
metcl |
|
| 25 |
|
metge0 |
|
| 26 |
24 25
|
jca |
|
| 27 |
21 22 23 26
|
syl3anc |
|
| 28 |
27
|
simpld |
|
| 29 |
20 28
|
remulcld |
|
| 30 |
|
peano2re |
|
| 31 |
11 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
32 28
|
remulcld |
|
| 34 |
|
id |
|
| 35 |
3 4 1 34
|
rrnequiv |
|
| 36 |
35
|
simprd |
|
| 37 |
20
|
lep1d |
|
| 38 |
|
lemul1a |
|
| 39 |
20 32 27 37 38
|
syl31anc |
|
| 40 |
19 29 33 36 39
|
letrd |
|
| 41 |
35
|
simpld |
|
| 42 |
19
|
recnd |
|
| 43 |
42
|
mullidd |
|
| 44 |
41 43
|
breqtrrd |
|
| 45 |
|
eqid |
|
| 46 |
|
ax-resscn |
|
| 47 |
3 45
|
cnpwstotbnd |
|
| 48 |
46 47
|
mpan |
|
| 49 |
5 6 14 16 40 44 45 2 48
|
equivbnd2 |
|