Step |
Hyp |
Ref |
Expression |
1 |
|
rrntotbnd.1 |
|
2 |
|
rrntotbnd.2 |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4 1
|
repwsmet |
|
6 |
1
|
rrnmet |
|
7 |
|
hashcl |
|
8 |
|
nn0re |
|
9 |
|
nn0ge0 |
|
10 |
8 9
|
resqrtcld |
|
11 |
7 10
|
syl |
|
12 |
8 9
|
sqrtge0d |
|
13 |
7 12
|
syl |
|
14 |
11 13
|
ge0p1rpd |
|
15 |
|
1rp |
|
16 |
15
|
a1i |
|
17 |
|
metcl |
|
18 |
17
|
3expb |
|
19 |
6 18
|
sylan |
|
20 |
11
|
adantr |
|
21 |
5
|
adantr |
|
22 |
|
simprl |
|
23 |
|
simprr |
|
24 |
|
metcl |
|
25 |
|
metge0 |
|
26 |
24 25
|
jca |
|
27 |
21 22 23 26
|
syl3anc |
|
28 |
27
|
simpld |
|
29 |
20 28
|
remulcld |
|
30 |
|
peano2re |
|
31 |
11 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
32 28
|
remulcld |
|
34 |
|
id |
|
35 |
3 4 1 34
|
rrnequiv |
|
36 |
35
|
simprd |
|
37 |
20
|
lep1d |
|
38 |
|
lemul1a |
|
39 |
20 32 27 37 38
|
syl31anc |
|
40 |
19 29 33 36 39
|
letrd |
|
41 |
35
|
simpld |
|
42 |
19
|
recnd |
|
43 |
42
|
mulid2d |
|
44 |
41 43
|
breqtrrd |
|
45 |
|
eqid |
|
46 |
|
ax-resscn |
|
47 |
3 45
|
cnpwstotbnd |
|
48 |
46 47
|
mpan |
|
49 |
5 6 14 16 40 44 45 2 48
|
equivbnd2 |
|