Metamath Proof Explorer


Theorem rru

Description: Relative version of Russell's paradox ru (which corresponds to the case A = _V ).

Originally a subproof in pwnss . (Contributed by Stefan O'Rear, 22-Feb-2015) Avoid df-nel . (Revised by Steven Nguyen, 23-Nov-2022) Reduce axiom usage. (Revised by Gino Giotto, 30-Aug-2024)

Ref Expression
Assertion rru ¬ x A | ¬ x x A

Proof

Step Hyp Ref Expression
1 eleq12 x = y x = y x x y y
2 1 anidms x = y x x y y
3 2 notbid x = y ¬ x x ¬ y y
4 3 cbvrabv x A | ¬ x x = y A | ¬ y y
5 4 eleq2i x A | ¬ x x x A | ¬ x x x A | ¬ x x y A | ¬ y y
6 elex x A | ¬ x x y A | ¬ y y x A | ¬ x x V
7 elex x A | ¬ x x A x A | ¬ x x V
8 7 adantr x A | ¬ x x A ¬ x A | ¬ x x x A | ¬ x x x A | ¬ x x V
9 eleq1 y = z y A z A
10 id y = z y = z
11 10 10 eleq12d y = z y y z z
12 11 notbid y = z ¬ y y ¬ z z
13 9 12 anbi12d y = z y A ¬ y y z A ¬ z z
14 eleq1 z = x A | ¬ x x z A x A | ¬ x x A
15 eleq12 z = x A | ¬ x x z = x A | ¬ x x z z x A | ¬ x x x A | ¬ x x
16 15 anidms z = x A | ¬ x x z z x A | ¬ x x x A | ¬ x x
17 16 notbid z = x A | ¬ x x ¬ z z ¬ x A | ¬ x x x A | ¬ x x
18 14 17 anbi12d z = x A | ¬ x x z A ¬ z z x A | ¬ x x A ¬ x A | ¬ x x x A | ¬ x x
19 df-rab y A | ¬ y y = y | y A ¬ y y
20 13 18 19 elab2gw x A | ¬ x x V x A | ¬ x x y A | ¬ y y x A | ¬ x x A ¬ x A | ¬ x x x A | ¬ x x
21 6 8 20 pm5.21nii x A | ¬ x x y A | ¬ y y x A | ¬ x x A ¬ x A | ¬ x x x A | ¬ x x
22 5 21 bitri x A | ¬ x x x A | ¬ x x x A | ¬ x x A ¬ x A | ¬ x x x A | ¬ x x
23 pclem6 x A | ¬ x x x A | ¬ x x x A | ¬ x x A ¬ x A | ¬ x x x A | ¬ x x ¬ x A | ¬ x x A
24 22 23 ax-mp ¬ x A | ¬ x x A