Metamath Proof Explorer


Theorem rrx0

Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023)

Ref Expression
Hypotheses rrxsca.r H = I
rrx0.0 0 ˙ = I × 0
Assertion rrx0 I V 0 H = 0 ˙

Proof

Step Hyp Ref Expression
1 rrxsca.r H = I
2 rrx0.0 0 ˙ = I × 0
3 1 rrxval I V H = toCPreHil fld freeLMod I
4 3 fveq2d I V 0 H = 0 toCPreHil fld freeLMod I
5 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
6 eqid Base fld freeLMod I = Base fld freeLMod I
7 eqid 𝑖 fld freeLMod I = 𝑖 fld freeLMod I
8 5 6 7 tcphval toCPreHil fld freeLMod I = fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x
9 8 a1i I V toCPreHil fld freeLMod I = fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x
10 9 fveq2d I V 0 toCPreHil fld freeLMod I = 0 fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x
11 fvexd I V Base fld freeLMod I V
12 11 mptexd I V x Base fld freeLMod I x 𝑖 fld freeLMod I x V
13 eqid fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x = fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x
14 eqid 0 fld freeLMod I = 0 fld freeLMod I
15 13 14 tng0 x Base fld freeLMod I x 𝑖 fld freeLMod I x V 0 fld freeLMod I = 0 fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x
16 12 15 syl I V 0 fld freeLMod I = 0 fld freeLMod I toNrmGrp x Base fld freeLMod I x 𝑖 fld freeLMod I x
17 refld fld Field
18 isfld fld Field fld DivRing fld CRing
19 drngring fld DivRing fld Ring
20 19 adantr fld DivRing fld CRing fld Ring
21 18 20 sylbi fld Field fld Ring
22 17 21 ax-mp fld Ring
23 eqid fld freeLMod I = fld freeLMod I
24 re0g 0 = 0 fld
25 23 24 frlm0 fld Ring I V I × 0 = 0 fld freeLMod I
26 22 25 mpan I V I × 0 = 0 fld freeLMod I
27 2 26 eqtr2id I V 0 fld freeLMod I = 0 ˙
28 10 16 27 3eqtr2d I V 0 toCPreHil fld freeLMod I = 0 ˙
29 4 28 eqtrd I V 0 H = 0 ˙