Metamath Proof Explorer


Theorem rrx0el

Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023)

Ref Expression
Hypotheses rrx0el.0 0 ˙ = I × 0
rrx0el.p P = I
Assertion rrx0el I V 0 ˙ P

Proof

Step Hyp Ref Expression
1 rrx0el.0 0 ˙ = I × 0
2 rrx0el.p P = I
3 c0ex 0 V
4 3 fconst I × 0 : I 0
5 4 a1i I V I × 0 : I 0
6 0re 0
7 snssg 0 0 0
8 6 7 ax-mp 0 0
9 6 8 mpbi 0
10 9 a1i I V 0
11 5 10 fssd I V I × 0 : I
12 reex V
13 12 a1i I V V
14 id I V I V
15 13 14 elmapd I V I × 0 I I × 0 : I
16 11 15 mpbird I V I × 0 I
17 16 1 2 3eltr4g I V 0 ˙ P