Metamath Proof Explorer


Theorem rrx2plord1

Description: The lexicographical ordering for points in the two dimensional Euclidean plane: a point is less than another point if its first coordinate is less than the first coordinate of the other point. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypothesis rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
Assertion rrx2plord1 XRYRX1<Y1XOY

Proof

Step Hyp Ref Expression
1 rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
2 simp3 XRYRX1<Y1X1<Y1
3 2 orcd XRYRX1<Y1X1<Y1X1=Y1X2<Y2
4 1 rrx2plord XRYRXOYX1<Y1X1=Y1X2<Y2
5 4 3adant3 XRYRX1<Y1XOYX1<Y1X1=Y1X2<Y2
6 3 5 mpbird XRYRX1<Y1XOY