| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx2line.i |
|
| 2 |
|
rrx2line.e |
|
| 3 |
|
rrx2line.b |
|
| 4 |
|
rrx2line.l |
|
| 5 |
|
fveq1 |
|
| 6 |
5
|
necon3i |
|
| 7 |
6
|
adantl |
|
| 8 |
1 2 3 4
|
rrx2line |
|
| 9 |
7 8
|
syl3an3 |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
oveq2d |
|
| 12 |
11
|
eqcoms |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
3ad2ant3 |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
adantr |
|
| 17 |
1 3
|
rrx2pxel |
|
| 18 |
17
|
recnd |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
adantr |
|
| 22 |
|
recn |
|
| 23 |
22
|
adantl |
|
| 24 |
21 23
|
affineid |
|
| 25 |
16 24
|
eqtrd |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
anbi1d |
|
| 28 |
27
|
rexbidva |
|
| 29 |
|
simpl |
|
| 30 |
29
|
a1i |
|
| 31 |
30
|
rexlimdva |
|
| 32 |
1 3
|
rrx2pyel |
|
| 33 |
32
|
adantl |
|
| 34 |
1 3
|
rrx2pyel |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
resubcld |
|
| 38 |
1 3
|
rrx2pyel |
|
| 39 |
38
|
3ad2ant2 |
|
| 40 |
39 35
|
resubcld |
|
| 41 |
40
|
adantr |
|
| 42 |
38
|
recnd |
|
| 43 |
42
|
3ad2ant2 |
|
| 44 |
34
|
recnd |
|
| 45 |
44
|
3ad2ant1 |
|
| 46 |
|
simpr |
|
| 47 |
46
|
necomd |
|
| 48 |
47
|
3ad2ant3 |
|
| 49 |
43 45 48
|
subne0d |
|
| 50 |
49
|
adantr |
|
| 51 |
37 41 50
|
redivcld |
|
| 52 |
51
|
adantr |
|
| 53 |
|
oveq2 |
|
| 54 |
53
|
oveq1d |
|
| 55 |
|
oveq1 |
|
| 56 |
54 55
|
oveq12d |
|
| 57 |
56
|
eqeq2d |
|
| 58 |
57
|
anbi2d |
|
| 59 |
58
|
adantl |
|
| 60 |
|
simpr |
|
| 61 |
44
|
mullidd |
|
| 62 |
61
|
3ad2ant1 |
|
| 63 |
62
|
adantr |
|
| 64 |
37
|
recnd |
|
| 65 |
42
|
adantl |
|
| 66 |
44
|
adantr |
|
| 67 |
65 66
|
subcld |
|
| 68 |
67
|
3adant3 |
|
| 69 |
68
|
adantr |
|
| 70 |
64 69 50
|
divcan1d |
|
| 71 |
63 70
|
oveq12d |
|
| 72 |
45
|
adantr |
|
| 73 |
32
|
recnd |
|
| 74 |
73
|
adantl |
|
| 75 |
72 74
|
pncan3d |
|
| 76 |
71 75
|
eqtr2d |
|
| 77 |
76
|
adantr |
|
| 78 |
|
1cnd |
|
| 79 |
51
|
recnd |
|
| 80 |
43
|
adantr |
|
| 81 |
78 79 72 80
|
submuladdmuld |
|
| 82 |
81
|
adantr |
|
| 83 |
77 82
|
eqtr4d |
|
| 84 |
60 83
|
jca |
|
| 85 |
52 59 84
|
rspcedvd |
|
| 86 |
85
|
ex |
|
| 87 |
31 86
|
impbid |
|
| 88 |
28 87
|
bitrd |
|
| 89 |
88
|
rabbidva |
|
| 90 |
9 89
|
eqtrd |
|