Metamath Proof Explorer


Theorem rrxbasefi

Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrxbasefi.x φ X Fin
rrxbasefi.h H = X
rrxbasefi.b B = Base H
Assertion rrxbasefi φ B = X

Proof

Step Hyp Ref Expression
1 rrxbasefi.x φ X Fin
2 rrxbasefi.h H = X
3 rrxbasefi.b B = Base H
4 2 3 rrxbase X Fin B = f X | finSupp 0 f
5 1 4 syl φ B = f X | finSupp 0 f
6 ssrab2 f X | finSupp 0 f X
7 5 6 eqsstrdi φ B X
8 simpr φ f X f X
9 elmapi f X f : X
10 9 adantl φ f X f : X
11 1 adantr φ f X X Fin
12 c0ex 0 V
13 12 a1i φ f X 0 V
14 10 11 13 fdmfifsupp φ f X finSupp 0 f
15 rabid f f X | finSupp 0 f f X finSupp 0 f
16 8 14 15 sylanbrc φ f X f f X | finSupp 0 f
17 5 eqcomd φ f X | finSupp 0 f = B
18 17 adantr φ f X f X | finSupp 0 f = B
19 16 18 eleqtrd φ f X f B
20 7 19 eqelssd φ B = X