Metamath Proof Explorer


Theorem rrxds

Description: The distance over generalized Euclidean spaces. Compare with df-rrn . (Contributed by Thierry Arnoux, 20-Jun-2019) (Proof shortened by AV, 20-Jul-2019)

Ref Expression
Hypotheses rrxval.r H = I
rrxbase.b B = Base H
Assertion rrxds I V f B , g B fld x I f x g x 2 = dist H

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 rrxbase.b B = Base H
3 1 rrxval I V H = toCPreHil fld freeLMod I
4 3 fveq2d I V dist H = dist toCPreHil fld freeLMod I
5 recrng fld *-Ring
6 srngring fld *-Ring fld Ring
7 5 6 ax-mp fld Ring
8 eqid fld freeLMod I = fld freeLMod I
9 8 frlmlmod fld Ring I V fld freeLMod I LMod
10 7 9 mpan I V fld freeLMod I LMod
11 lmodgrp fld freeLMod I LMod fld freeLMod I Grp
12 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
13 eqid norm toCPreHil fld freeLMod I = norm toCPreHil fld freeLMod I
14 eqid - fld freeLMod I = - fld freeLMod I
15 12 13 14 tcphds fld freeLMod I Grp norm toCPreHil fld freeLMod I - fld freeLMod I = dist toCPreHil fld freeLMod I
16 10 11 15 3syl I V norm toCPreHil fld freeLMod I - fld freeLMod I = dist toCPreHil fld freeLMod I
17 eqid Base fld freeLMod I = Base fld freeLMod I
18 17 14 grpsubf fld freeLMod I Grp - fld freeLMod I : Base fld freeLMod I × Base fld freeLMod I Base fld freeLMod I
19 10 11 18 3syl I V - fld freeLMod I : Base fld freeLMod I × Base fld freeLMod I Base fld freeLMod I
20 1 2 rrxbase I V B = h I | finSupp 0 h
21 rebase = Base fld
22 re0g 0 = 0 fld
23 eqid h I | finSupp 0 h = h I | finSupp 0 h
24 8 21 22 23 frlmbas fld Ring I V h I | finSupp 0 h = Base fld freeLMod I
25 7 24 mpan I V h I | finSupp 0 h = Base fld freeLMod I
26 20 25 eqtrd I V B = Base fld freeLMod I
27 26 sqxpeqd I V B × B = Base fld freeLMod I × Base fld freeLMod I
28 27 26 feq23d I V - fld freeLMod I : B × B B - fld freeLMod I : Base fld freeLMod I × Base fld freeLMod I Base fld freeLMod I
29 19 28 mpbird I V - fld freeLMod I : B × B B
30 29 fovrnda I V f B g B f - fld freeLMod I g B
31 29 ffnd I V - fld freeLMod I Fn B × B
32 fnov - fld freeLMod I Fn B × B - fld freeLMod I = f B , g B f - fld freeLMod I g
33 31 32 sylib I V - fld freeLMod I = f B , g B f - fld freeLMod I g
34 1 2 rrxnm I V h B fld x I h x 2 = norm H
35 3 fveq2d I V norm H = norm toCPreHil fld freeLMod I
36 34 35 eqtr2d I V norm toCPreHil fld freeLMod I = h B fld x I h x 2
37 fveq1 h = f - fld freeLMod I g h x = f - fld freeLMod I g x
38 37 oveq1d h = f - fld freeLMod I g h x 2 = f - fld freeLMod I g x 2
39 38 mpteq2dv h = f - fld freeLMod I g x I h x 2 = x I f - fld freeLMod I g x 2
40 39 oveq2d h = f - fld freeLMod I g fld x I h x 2 = fld x I f - fld freeLMod I g x 2
41 40 fveq2d h = f - fld freeLMod I g fld x I h x 2 = fld x I f - fld freeLMod I g x 2
42 30 33 36 41 fmpoco I V norm toCPreHil fld freeLMod I - fld freeLMod I = f B , g B fld x I f - fld freeLMod I g x 2
43 simp1 I V f B g B I V
44 simprl I V f B g B f B
45 26 adantr I V f B g B B = Base fld freeLMod I
46 44 45 eleqtrd I V f B g B f Base fld freeLMod I
47 46 3impb I V f B g B f Base fld freeLMod I
48 8 21 17 frlmbasmap I V f Base fld freeLMod I f I
49 43 47 48 syl2anc I V f B g B f I
50 elmapi f I f : I
51 49 50 syl I V f B g B f : I
52 51 ffnd I V f B g B f Fn I
53 simprr I V f B g B g B
54 53 45 eleqtrd I V f B g B g Base fld freeLMod I
55 54 3impb I V f B g B g Base fld freeLMod I
56 8 21 17 frlmbasmap I V g Base fld freeLMod I g I
57 43 55 56 syl2anc I V f B g B g I
58 elmapi g I g : I
59 57 58 syl I V f B g B g : I
60 59 ffnd I V f B g B g Fn I
61 inidm I I = I
62 eqidd I V f B g B x I f x = f x
63 eqidd I V f B g B x I g x = g x
64 52 60 43 43 61 62 63 offval I V f B g B f - fld f g = x I f x - fld g x
65 7 a1i I V f B g B fld Ring
66 simpl I V f B g B I V
67 eqid - fld = - fld
68 8 17 65 66 46 54 67 14 frlmsubgval I V f B g B f - fld freeLMod I g = f - fld f g
69 68 3impb I V f B g B f - fld freeLMod I g = f - fld f g
70 51 ffvelrnda I V f B g B x I f x
71 59 ffvelrnda I V f B g B x I g x
72 67 resubgval f x g x f x g x = f x - fld g x
73 70 71 72 syl2anc I V f B g B x I f x g x = f x - fld g x
74 73 mpteq2dva I V f B g B x I f x g x = x I f x - fld g x
75 64 69 74 3eqtr4d I V f B g B f - fld freeLMod I g = x I f x g x
76 70 71 resubcld I V f B g B x I f x g x
77 75 76 fvmpt2d I V f B g B x I f - fld freeLMod I g x = f x g x
78 77 oveq1d I V f B g B x I f - fld freeLMod I g x 2 = f x g x 2
79 78 mpteq2dva I V f B g B x I f - fld freeLMod I g x 2 = x I f x g x 2
80 79 oveq2d I V f B g B fld x I f - fld freeLMod I g x 2 = fld x I f x g x 2
81 80 fveq2d I V f B g B fld x I f - fld freeLMod I g x 2 = fld x I f x g x 2
82 81 mpoeq3dva I V f B , g B fld x I f - fld freeLMod I g x 2 = f B , g B fld x I f x g x 2
83 42 82 eqtrd I V norm toCPreHil fld freeLMod I - fld freeLMod I = f B , g B fld x I f x g x 2
84 4 16 83 3eqtr2rd I V f B , g B fld x I f x g x 2 = dist H