Metamath Proof Explorer


Theorem rrxdsfi

Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rrxdsfi.h H = I
rrxdsfi.b B = I
Assertion rrxdsfi I Fin dist H = f B , g B k I f k g k 2

Proof

Step Hyp Ref Expression
1 rrxdsfi.h H = I
2 rrxdsfi.b B = I
3 id I Fin I Fin
4 eqid Base H = Base H
5 3 1 4 rrxbasefi I Fin Base H = I
6 5 2 syl6reqr I Fin B = Base H
7 6 adantr I Fin f B B = Base H
8 df-refld fld = fld 𝑠
9 8 oveq1i fld k I f k g k 2 = fld 𝑠 k I f k g k 2
10 simp1 I Fin f B g B I Fin
11 simpr I Fin f B f B
12 11 2 eleqtrdi I Fin f B f I
13 12 3adant3 I Fin f B g B f I
14 elmapi f I f : I
15 13 14 syl I Fin f B g B f : I
16 15 ffvelrnda I Fin f B g B k I f k
17 simpr I Fin g B g B
18 17 2 eleqtrdi I Fin g B g I
19 18 3adant2 I Fin f B g B g I
20 elmapi g I g : I
21 19 20 syl I Fin f B g B g : I
22 21 ffvelrnda I Fin f B g B k I g k
23 16 22 resubcld I Fin f B g B k I f k g k
24 23 resqcld I Fin f B g B k I f k g k 2
25 10 24 regsumfsum I Fin f B g B fld 𝑠 k I f k g k 2 = k I f k g k 2
26 9 25 syl5req I Fin f B g B k I f k g k 2 = fld k I f k g k 2
27 26 fveq2d I Fin f B g B k I f k g k 2 = fld k I f k g k 2
28 27 3expb I Fin f B g B k I f k g k 2 = fld k I f k g k 2
29 6 7 28 mpoeq123dva I Fin f B , g B k I f k g k 2 = f Base H , g Base H fld k I f k g k 2
30 1 4 rrxds I Fin f Base H , g Base H fld k I f k g k 2 = dist H
31 29 30 eqtr2d I Fin dist H = f B , g B k I f k g k 2