Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
|
2 |
|
rrxmval.d |
|
3 |
|
rrxdstprj1.1 |
|
4 |
|
simplll |
|
5 |
|
simpr |
|
6 |
|
simplr |
|
7 |
|
simprl |
|
8 |
1 7
|
rrxfsupp |
|
9 |
|
simprr |
|
10 |
1 9
|
rrxfsupp |
|
11 |
|
unfi |
|
12 |
8 10 11
|
syl2anc |
|
13 |
1 7
|
rrxsuppss |
|
14 |
1 9
|
rrxsuppss |
|
15 |
13 14
|
unssd |
|
16 |
15
|
sselda |
|
17 |
1 7
|
rrxf |
|
18 |
17
|
ffvelrnda |
|
19 |
1 9
|
rrxf |
|
20 |
19
|
ffvelrnda |
|
21 |
18 20
|
resubcld |
|
22 |
21
|
resqcld |
|
23 |
16 22
|
syldan |
|
24 |
21
|
sqge0d |
|
25 |
16 24
|
syldan |
|
26 |
|
fveq2 |
|
27 |
|
fveq2 |
|
28 |
26 27
|
oveq12d |
|
29 |
28
|
oveq1d |
|
30 |
|
simplr |
|
31 |
12 23 25 29 30
|
fsumge1 |
|
32 |
15 30
|
sseldd |
|
33 |
17 32
|
ffvelrnd |
|
34 |
19 32
|
ffvelrnd |
|
35 |
33 34
|
resubcld |
|
36 |
|
absresq |
|
37 |
35 36
|
syl |
|
38 |
12 23
|
fsumrecl |
|
39 |
12 23 25
|
fsumge0 |
|
40 |
|
resqrtth |
|
41 |
38 39 40
|
syl2anc |
|
42 |
31 37 41
|
3brtr4d |
|
43 |
35
|
recnd |
|
44 |
43
|
abscld |
|
45 |
38 39
|
resqrtcld |
|
46 |
43
|
absge0d |
|
47 |
38 39
|
sqrtge0d |
|
48 |
44 45 46 47
|
le2sqd |
|
49 |
42 48
|
mpbird |
|
50 |
3
|
remetdval |
|
51 |
33 34 50
|
syl2anc |
|
52 |
1 2
|
rrxmval |
|
53 |
52
|
3expb |
|
54 |
53
|
adantlr |
|
55 |
49 51 54
|
3brtr4d |
|
56 |
4 5 6 55
|
syl21anc |
|
57 |
|
simplll |
|
58 |
|
simplrl |
|
59 |
|
ssun1 |
|
60 |
59
|
a1i |
|
61 |
60
|
sscond |
|
62 |
61
|
sselda |
|
63 |
|
simpr |
|
64 |
1 63
|
rrxf |
|
65 |
|
ssidd |
|
66 |
|
simpl |
|
67 |
|
0red |
|
68 |
64 65 66 67
|
suppssr |
|
69 |
57 58 62 68
|
syl21anc |
|
70 |
|
0red |
|
71 |
69 70
|
eqeltrd |
|
72 |
|
simplrr |
|
73 |
|
ssun2 |
|
74 |
73
|
a1i |
|
75 |
74
|
sscond |
|
76 |
75
|
sselda |
|
77 |
|
simpr |
|
78 |
1 77
|
rrxf |
|
79 |
|
ssidd |
|
80 |
|
simpl |
|
81 |
|
0red |
|
82 |
78 79 80 81
|
suppssr |
|
83 |
57 72 76 82
|
syl21anc |
|
84 |
83 70
|
eqeltrd |
|
85 |
71 84 50
|
syl2anc |
|
86 |
69 83
|
oveq12d |
|
87 |
|
0m0e0 |
|
88 |
86 87
|
eqtrdi |
|
89 |
88
|
abs00bd |
|
90 |
85 89
|
eqtrd |
|
91 |
1 2
|
rrxmet |
|
92 |
91
|
ad3antrrr |
|
93 |
|
metge0 |
|
94 |
92 58 72 93
|
syl3anc |
|
95 |
90 94
|
eqbrtrd |
|
96 |
|
simplr |
|
97 |
|
simprl |
|
98 |
1 97
|
rrxsuppss |
|
99 |
|
simprr |
|
100 |
1 99
|
rrxsuppss |
|
101 |
98 100
|
unssd |
|
102 |
|
undif |
|
103 |
101 102
|
sylib |
|
104 |
96 103
|
eleqtrrd |
|
105 |
|
elun |
|
106 |
104 105
|
sylib |
|
107 |
56 95 106
|
mpjaodan |
|