| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmval.1 |
|
| 2 |
|
rrxmval.d |
|
| 3 |
|
rrxdstprj1.1 |
|
| 4 |
|
simplll |
|
| 5 |
|
simpr |
|
| 6 |
|
simplr |
|
| 7 |
|
simprl |
|
| 8 |
1 7
|
rrxfsupp |
|
| 9 |
|
simprr |
|
| 10 |
1 9
|
rrxfsupp |
|
| 11 |
|
unfi |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
1 7
|
rrxsuppss |
|
| 14 |
1 9
|
rrxsuppss |
|
| 15 |
13 14
|
unssd |
|
| 16 |
15
|
sselda |
|
| 17 |
1 7
|
rrxf |
|
| 18 |
17
|
ffvelcdmda |
|
| 19 |
1 9
|
rrxf |
|
| 20 |
19
|
ffvelcdmda |
|
| 21 |
18 20
|
resubcld |
|
| 22 |
21
|
resqcld |
|
| 23 |
16 22
|
syldan |
|
| 24 |
21
|
sqge0d |
|
| 25 |
16 24
|
syldan |
|
| 26 |
|
fveq2 |
|
| 27 |
|
fveq2 |
|
| 28 |
26 27
|
oveq12d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
|
simplr |
|
| 31 |
12 23 25 29 30
|
fsumge1 |
|
| 32 |
15 30
|
sseldd |
|
| 33 |
17 32
|
ffvelcdmd |
|
| 34 |
19 32
|
ffvelcdmd |
|
| 35 |
33 34
|
resubcld |
|
| 36 |
|
absresq |
|
| 37 |
35 36
|
syl |
|
| 38 |
12 23
|
fsumrecl |
|
| 39 |
12 23 25
|
fsumge0 |
|
| 40 |
|
resqrtth |
|
| 41 |
38 39 40
|
syl2anc |
|
| 42 |
31 37 41
|
3brtr4d |
|
| 43 |
35
|
recnd |
|
| 44 |
43
|
abscld |
|
| 45 |
38 39
|
resqrtcld |
|
| 46 |
43
|
absge0d |
|
| 47 |
38 39
|
sqrtge0d |
|
| 48 |
44 45 46 47
|
le2sqd |
|
| 49 |
42 48
|
mpbird |
|
| 50 |
3
|
remetdval |
|
| 51 |
33 34 50
|
syl2anc |
|
| 52 |
1 2
|
rrxmval |
|
| 53 |
52
|
3expb |
|
| 54 |
53
|
adantlr |
|
| 55 |
49 51 54
|
3brtr4d |
|
| 56 |
4 5 6 55
|
syl21anc |
|
| 57 |
|
simplll |
|
| 58 |
|
simplrl |
|
| 59 |
|
ssun1 |
|
| 60 |
59
|
a1i |
|
| 61 |
60
|
sscond |
|
| 62 |
61
|
sselda |
|
| 63 |
|
simpr |
|
| 64 |
1 63
|
rrxf |
|
| 65 |
|
ssidd |
|
| 66 |
|
simpl |
|
| 67 |
|
0red |
|
| 68 |
64 65 66 67
|
suppssr |
|
| 69 |
57 58 62 68
|
syl21anc |
|
| 70 |
|
0red |
|
| 71 |
69 70
|
eqeltrd |
|
| 72 |
|
simplrr |
|
| 73 |
|
ssun2 |
|
| 74 |
73
|
a1i |
|
| 75 |
74
|
sscond |
|
| 76 |
75
|
sselda |
|
| 77 |
|
simpr |
|
| 78 |
1 77
|
rrxf |
|
| 79 |
|
ssidd |
|
| 80 |
|
simpl |
|
| 81 |
|
0red |
|
| 82 |
78 79 80 81
|
suppssr |
|
| 83 |
57 72 76 82
|
syl21anc |
|
| 84 |
83 70
|
eqeltrd |
|
| 85 |
71 84 50
|
syl2anc |
|
| 86 |
69 83
|
oveq12d |
|
| 87 |
|
0m0e0 |
|
| 88 |
86 87
|
eqtrdi |
|
| 89 |
88
|
abs00bd |
|
| 90 |
85 89
|
eqtrd |
|
| 91 |
1 2
|
rrxmet |
|
| 92 |
91
|
ad3antrrr |
|
| 93 |
|
metge0 |
|
| 94 |
92 58 72 93
|
syl3anc |
|
| 95 |
90 94
|
eqbrtrd |
|
| 96 |
|
simplr |
|
| 97 |
|
simprl |
|
| 98 |
1 97
|
rrxsuppss |
|
| 99 |
|
simprr |
|
| 100 |
1 99
|
rrxsuppss |
|
| 101 |
98 100
|
unssd |
|
| 102 |
|
undif |
|
| 103 |
101 102
|
sylib |
|
| 104 |
96 103
|
eleqtrrd |
|
| 105 |
|
elun |
|
| 106 |
104 105
|
sylib |
|
| 107 |
56 95 106
|
mpjaodan |
|