Metamath Proof Explorer


Theorem rrxf

Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 X = h I | finSupp 0 h
rrxf.1 φ F X
Assertion rrxf φ F : I

Proof

Step Hyp Ref Expression
1 rrxmval.1 X = h I | finSupp 0 h
2 rrxf.1 φ F X
3 1 ssrab3 X I
4 3 2 sselid φ F I
5 elmapi F I F : I
6 4 5 syl φ F : I