Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Euclidean spaces
rrxfsupp
Next ⟩
rrxsuppss
Metamath Proof Explorer
Ascii
Unicode
Theorem
rrxfsupp
Description:
Euclidean vectors are of finite support.
(Contributed by
Thierry Arnoux
, 7-Jul-2019)
Ref
Expression
Hypotheses
rrxmval.1
⊢
X
=
h
∈
ℝ
I
|
finSupp
0
⁡
h
rrxf.1
⊢
φ
→
F
∈
X
Assertion
rrxfsupp
⊢
φ
→
F
supp
0
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
rrxmval.1
⊢
X
=
h
∈
ℝ
I
|
finSupp
0
⁡
h
2
rrxf.1
⊢
φ
→
F
∈
X
3
2
1
eleqtrdi
⊢
φ
→
F
∈
h
∈
ℝ
I
|
finSupp
0
⁡
h
4
breq1
⊢
h
=
F
→
finSupp
0
⁡
h
↔
finSupp
0
⁡
F
5
4
elrab
⊢
F
∈
h
∈
ℝ
I
|
finSupp
0
⁡
h
↔
F
∈
ℝ
I
∧
finSupp
0
⁡
F
6
3
5
sylib
⊢
φ
→
F
∈
ℝ
I
∧
finSupp
0
⁡
F
7
6
simprd
⊢
φ
→
finSupp
0
⁡
F
8
7
fsuppimpd
⊢
φ
→
F
supp
0
∈
Fin