Metamath Proof Explorer


Theorem rrxfsupp

Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 X = h I | finSupp 0 h
rrxf.1 φ F X
Assertion rrxfsupp φ F supp 0 Fin

Proof

Step Hyp Ref Expression
1 rrxmval.1 X = h I | finSupp 0 h
2 rrxf.1 φ F X
3 2 1 eleqtrdi φ F h I | finSupp 0 h
4 breq1 h = F finSupp 0 h finSupp 0 F
5 4 elrab F h I | finSupp 0 h F I finSupp 0 F
6 3 5 sylib φ F I finSupp 0 F
7 6 simprd φ finSupp 0 F
8 7 fsuppimpd φ F supp 0 Fin