Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
|
2 |
|
rrxmval.d |
|
3 |
|
simprl |
|
4 |
1 3
|
rrxfsupp |
|
5 |
|
simprr |
|
6 |
1 5
|
rrxfsupp |
|
7 |
|
unfi |
|
8 |
4 6 7
|
syl2anc |
|
9 |
1 3
|
rrxsuppss |
|
10 |
1 5
|
rrxsuppss |
|
11 |
9 10
|
unssd |
|
12 |
11
|
sselda |
|
13 |
1 3
|
rrxf |
|
14 |
13
|
ffvelrnda |
|
15 |
1 5
|
rrxf |
|
16 |
15
|
ffvelrnda |
|
17 |
14 16
|
resubcld |
|
18 |
17
|
resqcld |
|
19 |
12 18
|
syldan |
|
20 |
8 19
|
fsumrecl |
|
21 |
17
|
sqge0d |
|
22 |
12 21
|
syldan |
|
23 |
8 19 22
|
fsumge0 |
|
24 |
20 23
|
resqrtcld |
|
25 |
24
|
ralrimivva |
|
26 |
|
eqid |
|
27 |
26
|
fmpo |
|
28 |
25 27
|
sylib |
|
29 |
1 2
|
rrxmfval |
|
30 |
29
|
feq1d |
|
31 |
28 30
|
mpbird |
|
32 |
|
sqrt00 |
|
33 |
20 23 32
|
syl2anc |
|
34 |
8 19 22
|
fsum00 |
|
35 |
17
|
recnd |
|
36 |
|
sqeq0 |
|
37 |
35 36
|
syl |
|
38 |
14
|
recnd |
|
39 |
16
|
recnd |
|
40 |
38 39
|
subeq0ad |
|
41 |
37 40
|
bitrd |
|
42 |
12 41
|
syldan |
|
43 |
42
|
ralbidva |
|
44 |
33 34 43
|
3bitrd |
|
45 |
1 2
|
rrxmval |
|
46 |
45
|
3expb |
|
47 |
46
|
eqeq1d |
|
48 |
13
|
ffnd |
|
49 |
15
|
ffnd |
|
50 |
|
eqfnfv |
|
51 |
48 49 50
|
syl2anc |
|
52 |
|
ssun1 |
|
53 |
52
|
a1i |
|
54 |
|
simpl |
|
55 |
|
0red |
|
56 |
13 53 54 55
|
suppssr |
|
57 |
|
ssun2 |
|
58 |
57
|
a1i |
|
59 |
15 58 54 55
|
suppssr |
|
60 |
56 59
|
eqtr4d |
|
61 |
60
|
ralrimiva |
|
62 |
11 61
|
raldifeq |
|
63 |
51 62
|
bitr4d |
|
64 |
44 47 63
|
3bitr4d |
|
65 |
8
|
3adant2 |
|
66 |
|
simp2 |
|
67 |
1 66
|
rrxfsupp |
|
68 |
|
unfi |
|
69 |
65 67 68
|
syl2anc |
|
70 |
69
|
3expa |
|
71 |
70
|
an32s |
|
72 |
11
|
adantr |
|
73 |
|
simpr |
|
74 |
1 73
|
rrxsuppss |
|
75 |
72 74
|
unssd |
|
76 |
75
|
sselda |
|
77 |
14
|
adantlr |
|
78 |
1 73
|
rrxf |
|
79 |
78
|
ffvelrnda |
|
80 |
77 79
|
resubcld |
|
81 |
76 80
|
syldan |
|
82 |
16
|
adantlr |
|
83 |
79 82
|
resubcld |
|
84 |
76 83
|
syldan |
|
85 |
71 81 84
|
trirn |
|
86 |
38
|
adantlr |
|
87 |
79
|
recnd |
|
88 |
39
|
adantlr |
|
89 |
86 87 88
|
npncand |
|
90 |
89
|
oveq1d |
|
91 |
76 90
|
syldan |
|
92 |
91
|
sumeq2dv |
|
93 |
92
|
fveq2d |
|
94 |
|
sqsubswap |
|
95 |
86 87 94
|
syl2anc |
|
96 |
76 95
|
syldan |
|
97 |
96
|
sumeq2dv |
|
98 |
97
|
fveq2d |
|
99 |
98
|
oveq1d |
|
100 |
85 93 99
|
3brtr3d |
|
101 |
46
|
adantr |
|
102 |
|
simp1 |
|
103 |
3
|
3adant2 |
|
104 |
5
|
3adant2 |
|
105 |
1 103
|
rrxsuppss |
|
106 |
1 104
|
rrxsuppss |
|
107 |
105 106
|
unssd |
|
108 |
1 66
|
rrxsuppss |
|
109 |
107 108
|
unssd |
|
110 |
|
ssun1 |
|
111 |
110
|
a1i |
|
112 |
1 2 102 103 104 109 69 111
|
rrxmetlem |
|
113 |
112
|
fveq2d |
|
114 |
113
|
3expa |
|
115 |
114
|
an32s |
|
116 |
101 115
|
eqtrd |
|
117 |
1 2
|
rrxmval |
|
118 |
117
|
3adant3r |
|
119 |
1 2
|
rrxmval |
|
120 |
119
|
3adant3l |
|
121 |
118 120
|
oveq12d |
|
122 |
|
ssun2 |
|
123 |
122
|
a1i |
|
124 |
52 110
|
sstri |
|
125 |
124
|
a1i |
|
126 |
123 125
|
unssd |
|
127 |
1 2 102 66 103 109 69 126
|
rrxmetlem |
|
128 |
127
|
fveq2d |
|
129 |
57 110
|
sstri |
|
130 |
129
|
a1i |
|
131 |
123 130
|
unssd |
|
132 |
1 2 102 66 104 109 69 131
|
rrxmetlem |
|
133 |
132
|
fveq2d |
|
134 |
128 133
|
oveq12d |
|
135 |
121 134
|
eqtrd |
|
136 |
135
|
3expa |
|
137 |
136
|
an32s |
|
138 |
100 116 137
|
3brtr4d |
|
139 |
138
|
ralrimiva |
|
140 |
64 139
|
jca |
|
141 |
140
|
ralrimivva |
|
142 |
|
ovex |
|
143 |
1 142
|
rabex2 |
|
144 |
|
ismet |
|
145 |
143 144
|
ax-mp |
|
146 |
31 141 145
|
sylanbrc |
|