Metamath Proof Explorer


Theorem rrxmetfi

Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxmetfi.1 D = dist I
Assertion rrxmetfi I Fin D Met I

Proof

Step Hyp Ref Expression
1 rrxmetfi.1 D = dist I
2 eqid h I | finSupp 0 h = h I | finSupp 0 h
3 2 1 rrxmet I Fin D Met h I | finSupp 0 h
4 eqid I = I
5 eqid Base I = Base I
6 4 5 rrxbase I Fin Base I = h I | finSupp 0 h
7 id I Fin I Fin
8 7 4 5 rrxbasefi I Fin Base I = I
9 6 8 eqtr3d I Fin h I | finSupp 0 h = I
10 9 fveq2d I Fin Met h I | finSupp 0 h = Met I
11 3 10 eleqtrd I Fin D Met I