Metamath Proof Explorer


Theorem rrxmfval

Description: The value of the Euclidean metric. Compare with rrnval . (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses rrxmval.1 X = h I | finSupp 0 h
rrxmval.d D = dist I
Assertion rrxmfval I V D = f X , g X k supp 0 f supp 0 g f k g k 2

Proof

Step Hyp Ref Expression
1 rrxmval.1 X = h I | finSupp 0 h
2 rrxmval.d D = dist I
3 eqid f Base I , g Base I fld x I f x g x 2 = f Base I , g Base I fld x I f x g x 2
4 fvex fld x I f x g x 2 V
5 3 4 fnmpoi f Base I , g Base I fld x I f x g x 2 Fn Base I × Base I
6 eqid I = I
7 eqid Base I = Base I
8 6 7 rrxds I V f Base I , g Base I fld x I f x g x 2 = dist I
9 2 8 eqtr4id I V D = f Base I , g Base I fld x I f x g x 2
10 6 7 rrxbase I V Base I = h I | finSupp 0 h
11 1 10 eqtr4id I V X = Base I
12 11 sqxpeqd I V X × X = Base I × Base I
13 9 12 fneq12d I V D Fn X × X f Base I , g Base I fld x I f x g x 2 Fn Base I × Base I
14 5 13 mpbiri I V D Fn X × X
15 fnov D Fn X × X D = f X , g X f D g
16 14 15 sylib I V D = f X , g X f D g
17 1 2 rrxmval I V f X g X f D g = k supp 0 f supp 0 g f k g k 2
18 17 mpoeq3dva I V f X , g X f D g = f X , g X k supp 0 f supp 0 g f k g k 2
19 16 18 eqtrd I V D = f X , g X k supp 0 f supp 0 g f k g k 2