Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
|
2 |
|
rrxmval.d |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
rrxds |
|
6 |
2 5
|
eqtr4id |
|
7 |
3 4
|
rrxbase |
|
8 |
1 7
|
eqtr4id |
|
9 |
|
mpoeq12 |
|
10 |
8 8 9
|
syl2anc |
|
11 |
6 10
|
eqtr4d |
|
12 |
11
|
3ad2ant1 |
|
13 |
|
simprl |
|
14 |
13
|
fveq1d |
|
15 |
|
simprr |
|
16 |
15
|
fveq1d |
|
17 |
14 16
|
oveq12d |
|
18 |
17
|
oveq1d |
|
19 |
18
|
mpteq2dv |
|
20 |
19
|
oveq2d |
|
21 |
|
simp2 |
|
22 |
1 21
|
rrxf |
|
23 |
22
|
ffvelrnda |
|
24 |
|
simp3 |
|
25 |
1 24
|
rrxf |
|
26 |
25
|
ffvelrnda |
|
27 |
23 26
|
resubcld |
|
28 |
27
|
resqcld |
|
29 |
28
|
fmpttd |
|
30 |
1 21
|
rrxfsupp |
|
31 |
1 24
|
rrxfsupp |
|
32 |
|
unfi |
|
33 |
30 31 32
|
syl2anc |
|
34 |
1
|
rrxmvallem |
|
35 |
33 34
|
ssfid |
|
36 |
|
mptexg |
|
37 |
|
funmpt |
|
38 |
|
0cn |
|
39 |
|
funisfsupp |
|
40 |
37 38 39
|
mp3an13 |
|
41 |
36 40
|
syl |
|
42 |
41
|
3ad2ant1 |
|
43 |
35 42
|
mpbird |
|
44 |
|
simp1 |
|
45 |
|
regsumsupp |
|
46 |
29 43 44 45
|
syl3anc |
|
47 |
|
suppssdm |
|
48 |
|
eqid |
|
49 |
48
|
dmmptss |
|
50 |
47 49
|
sstri |
|
51 |
50
|
a1i |
|
52 |
51
|
sselda |
|
53 |
|
eqidd |
|
54 |
|
simpr |
|
55 |
54
|
fveq2d |
|
56 |
54
|
fveq2d |
|
57 |
55 56
|
oveq12d |
|
58 |
57
|
oveq1d |
|
59 |
|
simpr |
|
60 |
|
ovexd |
|
61 |
53 58 59 60
|
fvmptd |
|
62 |
61
|
eqcomd |
|
63 |
52 62
|
syldan |
|
64 |
63
|
sumeq2dv |
|
65 |
46 64
|
eqtr4d |
|
66 |
65
|
adantr |
|
67 |
22
|
ffvelrnda |
|
68 |
67
|
recnd |
|
69 |
25
|
ffvelrnda |
|
70 |
69
|
recnd |
|
71 |
68 70
|
subcld |
|
72 |
71
|
sqcld |
|
73 |
52 72
|
syldan |
|
74 |
1 21
|
rrxsuppss |
|
75 |
1 24
|
rrxsuppss |
|
76 |
74 75
|
unssd |
|
77 |
76
|
ssdifssd |
|
78 |
77
|
sselda |
|
79 |
78 62
|
syldan |
|
80 |
76
|
ssdifd |
|
81 |
80
|
sselda |
|
82 |
|
ssidd |
|
83 |
|
0cnd |
|
84 |
29 82 44 83
|
suppssr |
|
85 |
81 84
|
syldan |
|
86 |
79 85
|
eqtrd |
|
87 |
34 73 86 33
|
fsumss |
|
88 |
87
|
adantr |
|
89 |
20 66 88
|
3eqtrd |
|
90 |
89
|
fveq2d |
|
91 |
|
fvexd |
|
92 |
12 90 21 24 91
|
ovmpod |
|