Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
|
2 |
|
simprl |
|
3 |
|
0cn |
|
4 |
2 3
|
eqeltrdi |
|
5 |
|
simprr |
|
6 |
2 5
|
eqtr4d |
|
7 |
4 6
|
subeq0bd |
|
8 |
7
|
sq0id |
|
9 |
8
|
ex |
|
10 |
|
ioran |
|
11 |
|
nne |
|
12 |
|
nne |
|
13 |
11 12
|
anbi12i |
|
14 |
10 13
|
bitri |
|
15 |
14
|
a1i |
|
16 |
|
eqidd |
|
17 |
|
simpr |
|
18 |
17
|
fveq2d |
|
19 |
17
|
fveq2d |
|
20 |
18 19
|
oveq12d |
|
21 |
20
|
oveq1d |
|
22 |
|
simpr |
|
23 |
|
ovex |
|
24 |
23
|
a1i |
|
25 |
16 21 22 24
|
fvmptd |
|
26 |
25
|
neeq1d |
|
27 |
26
|
bicomd |
|
28 |
27
|
necon1bbid |
|
29 |
9 15 28
|
3imtr4d |
|
30 |
29
|
con4d |
|
31 |
30
|
ss2rabdv |
|
32 |
|
unrab |
|
33 |
31 32
|
sseqtrrdi |
|
34 |
|
simp1 |
|
35 |
|
ovex |
|
36 |
|
eqid |
|
37 |
35 36
|
fnmpti |
|
38 |
|
suppvalfn |
|
39 |
37 3 38
|
mp3an13 |
|
40 |
34 39
|
syl |
|
41 |
|
elrabi |
|
42 |
41 1
|
eleq2s |
|
43 |
|
elmapi |
|
44 |
|
ffn |
|
45 |
42 43 44
|
3syl |
|
46 |
45
|
3ad2ant2 |
|
47 |
3
|
a1i |
|
48 |
|
suppvalfn |
|
49 |
46 34 47 48
|
syl3anc |
|
50 |
|
elrabi |
|
51 |
50 1
|
eleq2s |
|
52 |
|
elmapi |
|
53 |
|
ffn |
|
54 |
51 52 53
|
3syl |
|
55 |
54
|
3ad2ant3 |
|
56 |
|
suppvalfn |
|
57 |
55 34 47 56
|
syl3anc |
|
58 |
49 57
|
uneq12d |
|
59 |
33 40 58
|
3sstr4d |
|