Metamath Proof Explorer


Theorem rrxmvallem

Description: Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis rrxmval.1 X = h I | finSupp 0 h
Assertion rrxmvallem I V F X G X k I F k G k 2 supp 0 supp 0 F supp 0 G

Proof

Step Hyp Ref Expression
1 rrxmval.1 X = h I | finSupp 0 h
2 simprl I V F X G X x I F x = 0 G x = 0 F x = 0
3 0cn 0
4 2 3 eqeltrdi I V F X G X x I F x = 0 G x = 0 F x
5 simprr I V F X G X x I F x = 0 G x = 0 G x = 0
6 2 5 eqtr4d I V F X G X x I F x = 0 G x = 0 F x = G x
7 4 6 subeq0bd I V F X G X x I F x = 0 G x = 0 F x G x = 0
8 7 sq0id I V F X G X x I F x = 0 G x = 0 F x G x 2 = 0
9 8 ex I V F X G X x I F x = 0 G x = 0 F x G x 2 = 0
10 ioran ¬ F x 0 G x 0 ¬ F x 0 ¬ G x 0
11 nne ¬ F x 0 F x = 0
12 nne ¬ G x 0 G x = 0
13 11 12 anbi12i ¬ F x 0 ¬ G x 0 F x = 0 G x = 0
14 10 13 bitri ¬ F x 0 G x 0 F x = 0 G x = 0
15 14 a1i I V F X G X x I ¬ F x 0 G x 0 F x = 0 G x = 0
16 eqidd I V F X G X x I k I F k G k 2 = k I F k G k 2
17 simpr I V F X G X x I k = x k = x
18 17 fveq2d I V F X G X x I k = x F k = F x
19 17 fveq2d I V F X G X x I k = x G k = G x
20 18 19 oveq12d I V F X G X x I k = x F k G k = F x G x
21 20 oveq1d I V F X G X x I k = x F k G k 2 = F x G x 2
22 simpr I V F X G X x I x I
23 ovex F x G x 2 V
24 23 a1i I V F X G X x I F x G x 2 V
25 16 21 22 24 fvmptd I V F X G X x I k I F k G k 2 x = F x G x 2
26 25 neeq1d I V F X G X x I k I F k G k 2 x 0 F x G x 2 0
27 26 bicomd I V F X G X x I F x G x 2 0 k I F k G k 2 x 0
28 27 necon1bbid I V F X G X x I ¬ k I F k G k 2 x 0 F x G x 2 = 0
29 9 15 28 3imtr4d I V F X G X x I ¬ F x 0 G x 0 ¬ k I F k G k 2 x 0
30 29 con4d I V F X G X x I k I F k G k 2 x 0 F x 0 G x 0
31 30 ss2rabdv I V F X G X x I | k I F k G k 2 x 0 x I | F x 0 G x 0
32 unrab x I | F x 0 x I | G x 0 = x I | F x 0 G x 0
33 31 32 sseqtrrdi I V F X G X x I | k I F k G k 2 x 0 x I | F x 0 x I | G x 0
34 simp1 I V F X G X I V
35 ovex F k G k 2 V
36 eqid k I F k G k 2 = k I F k G k 2
37 35 36 fnmpti k I F k G k 2 Fn I
38 suppvalfn k I F k G k 2 Fn I I V 0 k I F k G k 2 supp 0 = x I | k I F k G k 2 x 0
39 37 3 38 mp3an13 I V k I F k G k 2 supp 0 = x I | k I F k G k 2 x 0
40 34 39 syl I V F X G X k I F k G k 2 supp 0 = x I | k I F k G k 2 x 0
41 elrabi F h I | finSupp 0 h F I
42 41 1 eleq2s F X F I
43 elmapi F I F : I
44 ffn F : I F Fn I
45 42 43 44 3syl F X F Fn I
46 45 3ad2ant2 I V F X G X F Fn I
47 3 a1i I V F X G X 0
48 suppvalfn F Fn I I V 0 F supp 0 = x I | F x 0
49 46 34 47 48 syl3anc I V F X G X F supp 0 = x I | F x 0
50 elrabi G h I | finSupp 0 h G I
51 50 1 eleq2s G X G I
52 elmapi G I G : I
53 ffn G : I G Fn I
54 51 52 53 3syl G X G Fn I
55 54 3ad2ant3 I V F X G X G Fn I
56 suppvalfn G Fn I I V 0 G supp 0 = x I | G x 0
57 55 34 47 56 syl3anc I V F X G X G supp 0 = x I | G x 0
58 49 57 uneq12d I V F X G X supp 0 F supp 0 G = x I | F x 0 x I | G x 0
59 33 40 58 3sstr4d I V F X G X k I F k G k 2 supp 0 supp 0 F supp 0 G