Metamath Proof Explorer


Theorem rrxnm

Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses rrxval.r H = I
rrxbase.b B = Base H
Assertion rrxnm I V f B fld x I f x 2 = norm H

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 rrxbase.b B = Base H
3 recrng fld *-Ring
4 srngring fld *-Ring fld Ring
5 3 4 ax-mp fld Ring
6 eqid fld freeLMod I = fld freeLMod I
7 6 frlmlmod fld Ring I V fld freeLMod I LMod
8 5 7 mpan I V fld freeLMod I LMod
9 lmodgrp fld freeLMod I LMod fld freeLMod I Grp
10 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
11 eqid norm toCPreHil fld freeLMod I = norm toCPreHil fld freeLMod I
12 eqid Base fld freeLMod I = Base fld freeLMod I
13 eqid 𝑖 fld freeLMod I = 𝑖 fld freeLMod I
14 10 11 12 13 tchnmfval fld freeLMod I Grp norm toCPreHil fld freeLMod I = f Base fld freeLMod I f 𝑖 fld freeLMod I f
15 8 9 14 3syl I V norm toCPreHil fld freeLMod I = f Base fld freeLMod I f 𝑖 fld freeLMod I f
16 1 rrxval I V H = toCPreHil fld freeLMod I
17 16 fveq2d I V norm H = norm toCPreHil fld freeLMod I
18 16 fveq2d I V Base H = Base toCPreHil fld freeLMod I
19 10 12 tcphbas Base fld freeLMod I = Base toCPreHil fld freeLMod I
20 18 2 19 3eqtr4g I V B = Base fld freeLMod I
21 1 2 rrxbase I V B = f I | finSupp 0 f
22 ssrab2 f I | finSupp 0 f I
23 21 22 eqsstrdi I V B I
24 23 sselda I V f B f I
25 16 fveq2d I V 𝑖 H = 𝑖 toCPreHil fld freeLMod I
26 1 2 rrxip I V h I , g I fld x I h x g x = 𝑖 H
27 10 13 tcphip 𝑖 fld freeLMod I = 𝑖 toCPreHil fld freeLMod I
28 27 a1i I V 𝑖 fld freeLMod I = 𝑖 toCPreHil fld freeLMod I
29 25 26 28 3eqtr4rd I V 𝑖 fld freeLMod I = h I , g I fld x I h x g x
30 29 adantr I V f I 𝑖 fld freeLMod I = h I , g I fld x I h x g x
31 simprl I V f I h = f g = f h = f
32 31 fveq1d I V f I h = f g = f h x = f x
33 simprr I V f I h = f g = f g = f
34 33 fveq1d I V f I h = f g = f g x = f x
35 32 34 oveq12d I V f I h = f g = f h x g x = f x f x
36 35 adantr I V f I h = f g = f x I h x g x = f x f x
37 elmapi f I f : I
38 37 adantl I V f I f : I
39 38 ffvelrnda I V f I x I f x
40 39 recnd I V f I x I f x
41 40 adantlr I V f I h = f g = f x I f x
42 41 sqvald I V f I h = f g = f x I f x 2 = f x f x
43 36 42 eqtr4d I V f I h = f g = f x I h x g x = f x 2
44 43 mpteq2dva I V f I h = f g = f x I h x g x = x I f x 2
45 44 oveq2d I V f I h = f g = f fld x I h x g x = fld x I f x 2
46 simpr I V f I f I
47 ovexd I V f I fld x I f x 2 V
48 30 45 46 46 47 ovmpod I V f I f 𝑖 fld freeLMod I f = fld x I f x 2
49 24 48 syldan I V f B f 𝑖 fld freeLMod I f = fld x I f x 2
50 49 eqcomd I V f B fld x I f x 2 = f 𝑖 fld freeLMod I f
51 50 fveq2d I V f B fld x I f x 2 = f 𝑖 fld freeLMod I f
52 20 51 mpteq12dva I V f B fld x I f x 2 = f Base fld freeLMod I f 𝑖 fld freeLMod I f
53 15 17 52 3eqtr4rd I V f B fld x I f x 2 = norm H