Metamath Proof Explorer


Theorem rrxsuppss

Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1 X = h I | finSupp 0 h
rrxf.1 φ F X
Assertion rrxsuppss φ F supp 0 I

Proof

Step Hyp Ref Expression
1 rrxmval.1 X = h I | finSupp 0 h
2 rrxf.1 φ F X
3 suppssdm F supp 0 dom F
4 1 2 rrxf φ F : I
5 3 4 fssdm φ F supp 0 I