Metamath Proof Explorer


Theorem rrxval

Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis rrxval.r H = I
Assertion rrxval I V H = toCPreHil fld freeLMod I

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 elex I V I V
3 oveq2 i = I fld freeLMod i = fld freeLMod I
4 3 fveq2d i = I toCPreHil fld freeLMod i = toCPreHil fld freeLMod I
5 df-rrx ℝ↑ = i V toCPreHil fld freeLMod i
6 fvex toCPreHil fld freeLMod I V
7 4 5 6 fvmpt I V I = toCPreHil fld freeLMod I
8 2 7 syl I V I = toCPreHil fld freeLMod I
9 1 8 syl5eq I V H = toCPreHil fld freeLMod I