Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Euclidean spaces
rrxval
Next ⟩
rrxbase
Metamath Proof Explorer
Ascii
Unicode
Theorem
rrxval
Description:
Value of the generalized Euclidean space.
(Contributed by
Thierry Arnoux
, 16-Jun-2019)
Ref
Expression
Hypothesis
rrxval.r
⊢
H
=
I
Assertion
rrxval
⊢
I
∈
V
→
H
=
toCPreHil
⁡
ℝ
fld
freeLMod
I
Proof
Step
Hyp
Ref
Expression
1
rrxval.r
⊢
H
=
I
2
elex
⊢
I
∈
V
→
I
∈
V
3
oveq2
⊢
i
=
I
→
ℝ
fld
freeLMod
i
=
ℝ
fld
freeLMod
I
4
3
fveq2d
⊢
i
=
I
→
toCPreHil
⁡
ℝ
fld
freeLMod
i
=
toCPreHil
⁡
ℝ
fld
freeLMod
I
5
df-rrx
⊢
ℝ↑
=
i
∈
V
⟼
toCPreHil
⁡
ℝ
fld
freeLMod
i
6
fvex
⊢
toCPreHil
⁡
ℝ
fld
freeLMod
I
∈
V
7
4
5
6
fvmpt
⊢
I
∈
V
→
I
=
toCPreHil
⁡
ℝ
fld
freeLMod
I
8
2
7
syl
⊢
I
∈
V
→
I
=
toCPreHil
⁡
ℝ
fld
freeLMod
I
9
1
8
syl5eq
⊢
I
∈
V
→
H
=
toCPreHil
⁡
ℝ
fld
freeLMod
I