Metamath Proof Explorer


Theorem rrxvsca

Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023)

Ref Expression
Hypotheses rrxval.r H = I
rrxbase.b B = Base H
rrxvsca.r ˙ = H
rrxvsca.i φ I V
rrxvsca.j φ J I
rrxvsca.a φ A
rrxvsca.x φ X Base H
Assertion rrxvsca φ A ˙ X J = A X J

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 rrxbase.b B = Base H
3 rrxvsca.r ˙ = H
4 rrxvsca.i φ I V
5 rrxvsca.j φ J I
6 rrxvsca.a φ A
7 rrxvsca.x φ X Base H
8 1 rrxval I V H = toCPreHil fld freeLMod I
9 4 8 syl φ H = toCPreHil fld freeLMod I
10 9 fveq2d φ H = toCPreHil fld freeLMod I
11 3 10 syl5eq φ ˙ = toCPreHil fld freeLMod I
12 11 oveqd φ A ˙ X = A toCPreHil fld freeLMod I X
13 12 fveq1d φ A ˙ X J = A toCPreHil fld freeLMod I X J
14 eqid fld freeLMod I = fld freeLMod I
15 eqid Base fld freeLMod I = Base fld freeLMod I
16 rebase = Base fld
17 9 fveq2d φ Base H = Base toCPreHil fld freeLMod I
18 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
19 18 15 tcphbas Base fld freeLMod I = Base toCPreHil fld freeLMod I
20 17 19 syl6eqr φ Base H = Base fld freeLMod I
21 7 20 eleqtrd φ X Base fld freeLMod I
22 eqid fld freeLMod I = fld freeLMod I
23 18 22 tcphvsca fld freeLMod I = toCPreHil fld freeLMod I
24 23 eqcomi toCPreHil fld freeLMod I = fld freeLMod I
25 remulr × = fld
26 14 15 16 4 6 21 5 24 25 frlmvscaval φ A toCPreHil fld freeLMod I X J = A X J
27 13 26 eqtrd φ A ˙ X J = A X J