Metamath Proof Explorer


Theorem rsp1

Description: The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k K = RSpan R
rspcl.b B = Base R
rsp1.o 1 ˙ = 1 R
Assertion rsp1 R Ring K 1 ˙ = B

Proof

Step Hyp Ref Expression
1 rspcl.k K = RSpan R
2 rspcl.b B = Base R
3 rsp1.o 1 ˙ = 1 R
4 2 3 ringidcl R Ring 1 ˙ B
5 4 snssd R Ring 1 ˙ B
6 1 2 rspssid R Ring 1 ˙ B 1 ˙ K 1 ˙
7 5 6 mpdan R Ring 1 ˙ K 1 ˙
8 3 fvexi 1 ˙ V
9 8 snss 1 ˙ K 1 ˙ 1 ˙ K 1 ˙
10 7 9 sylibr R Ring 1 ˙ K 1 ˙
11 eqid LIdeal R = LIdeal R
12 1 2 11 rspcl R Ring 1 ˙ B K 1 ˙ LIdeal R
13 5 12 mpdan R Ring K 1 ˙ LIdeal R
14 11 2 3 lidl1el R Ring K 1 ˙ LIdeal R 1 ˙ K 1 ˙ K 1 ˙ = B
15 13 14 mpdan R Ring 1 ˙ K 1 ˙ K 1 ˙ = B
16 10 15 mpbid R Ring K 1 ˙ = B