Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
rsp2
Next ⟩
r19.21t
Metamath Proof Explorer
Ascii
Unicode
Theorem
rsp2
Description:
Restricted specialization, with two quantifiers.
(Contributed by
NM
, 11-Feb-1997)
Ref
Expression
Assertion
rsp2
⊢
∀
x
∈
A
∀
y
∈
B
φ
→
x
∈
A
∧
y
∈
B
→
φ
Proof
Step
Hyp
Ref
Expression
1
rsp
⊢
∀
x
∈
A
∀
y
∈
B
φ
→
x
∈
A
→
∀
y
∈
B
φ
2
rsp
⊢
∀
y
∈
B
φ
→
y
∈
B
→
φ
3
1
2
syl6
⊢
∀
x
∈
A
∀
y
∈
B
φ
→
x
∈
A
→
y
∈
B
→
φ
4
3
impd
⊢
∀
x
∈
A
∀
y
∈
B
φ
→
x
∈
A
∧
y
∈
B
→
φ