Metamath Proof Explorer


Theorem rsp2

Description: Restricted specialization, with two quantifiers. (Contributed by NM, 11-Feb-1997)

Ref Expression
Assertion rsp2 x A y B φ x A y B φ

Proof

Step Hyp Ref Expression
1 rsp x A y B φ x A y B φ
2 rsp y B φ y B φ
3 1 2 syl6 x A y B φ x A y B φ
4 3 impd x A y B φ x A y B φ