Metamath Proof Explorer


Theorem rsp2e

Description: Restricted specialization. (Contributed by FL, 4-Jun-2012) (Proof shortened by Wolf Lammen, 7-Jan-2020)

Ref Expression
Assertion rsp2e x A y B φ x A y B φ

Proof

Step Hyp Ref Expression
1 rspe y B φ y B φ
2 rspe x A y B φ x A y B φ
3 1 2 sylan2 x A y B φ x A y B φ
4 3 3impb x A y B φ x A y B φ