Metamath Proof Explorer


Theorem rspc2

Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses rspc2.1 x χ
rspc2.2 y ψ
rspc2.3 x = A φ χ
rspc2.4 y = B χ ψ
Assertion rspc2 A C B D x C y D φ ψ

Proof

Step Hyp Ref Expression
1 rspc2.1 x χ
2 rspc2.2 y ψ
3 rspc2.3 x = A φ χ
4 rspc2.4 y = B χ ψ
5 nfcv _ x D
6 5 1 nfralw x y D χ
7 3 ralbidv x = A y D φ y D χ
8 6 7 rspc A C x C y D φ y D χ
9 2 4 rspc B D y D χ ψ
10 8 9 sylan9 A C B D x C y D φ ψ