Metamath Proof Explorer
Description: 2-variable restricted specialization, using implicit substitution.
(Contributed by Scott Fenton, 6-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rspc2dv.1 |
|
|
|
rspc2dv.2 |
|
|
|
rspc2dv.3 |
|
|
|
rspc2dv.4 |
|
|
|
rspc2dv.5 |
|
|
Assertion |
rspc2dv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspc2dv.1 |
|
2 |
|
rspc2dv.2 |
|
3 |
|
rspc2dv.3 |
|
4 |
|
rspc2dv.4 |
|
5 |
|
rspc2dv.5 |
|
6 |
1 2
|
rspc2va |
|
7 |
4 5 3 6
|
syl21anc |
|