Metamath Proof Explorer


Theorem rspc2va

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypotheses rspc2v.1 x = A φ χ
rspc2v.2 y = B χ ψ
Assertion rspc2va A C B D x C y D φ ψ

Proof

Step Hyp Ref Expression
1 rspc2v.1 x = A φ χ
2 rspc2v.2 y = B χ ψ
3 1 2 rspc2v A C B D x C y D φ ψ
4 3 imp A C B D x C y D φ ψ