Metamath Proof Explorer


Theorem rspc2vd

Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class D for the second set variable y may depend on the first set variable x . (Contributed by AV, 29-Mar-2021)

Ref Expression
Hypotheses rspc2vd.a x = A θ χ
rspc2vd.b y = B χ ψ
rspc2vd.c φ A C
rspc2vd.d φ x = A D = E
rspc2vd.e φ B E
Assertion rspc2vd φ x C y D θ ψ

Proof

Step Hyp Ref Expression
1 rspc2vd.a x = A θ χ
2 rspc2vd.b y = B χ ψ
3 rspc2vd.c φ A C
4 rspc2vd.d φ x = A D = E
5 rspc2vd.e φ B E
6 3 4 csbied φ A / x D = E
7 5 6 eleqtrrd φ B A / x D
8 nfcsb1v _ x A / x D
9 nfv x χ
10 8 9 nfralw x y A / x D χ
11 csbeq1a x = A D = A / x D
12 11 1 raleqbidv x = A y D θ y A / x D χ
13 10 12 rspc A C x C y D θ y A / x D χ
14 3 13 syl φ x C y D θ y A / x D χ
15 2 rspcv B A / x D y A / x D χ ψ
16 7 14 15 sylsyld φ x C y D θ ψ