Metamath Proof Explorer


Theorem rspc3dv

Description: 3-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses rspc3dv.1 x = A ψ θ
rspc3dv.2 y = B θ τ
rspc3dv.3 z = C τ χ
rspc3dv.4 φ x D y E z F ψ
rspc3dv.5 φ A D
rspc3dv.6 φ B E
rspc3dv.7 φ C F
Assertion rspc3dv φ χ

Proof

Step Hyp Ref Expression
1 rspc3dv.1 x = A ψ θ
2 rspc3dv.2 y = B θ τ
3 rspc3dv.3 z = C τ χ
4 rspc3dv.4 φ x D y E z F ψ
5 rspc3dv.5 φ A D
6 rspc3dv.6 φ B E
7 rspc3dv.7 φ C F
8 5 6 7 3jca φ A D B E C F
9 1 2 3 rspc3v A D B E C F x D y E z F ψ χ
10 8 4 9 sylc φ χ