Metamath Proof Explorer


Theorem rspc3ev

Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses rspc3v.1 x = A φ χ
rspc3v.2 y = B χ θ
rspc3v.3 z = C θ ψ
Assertion rspc3ev A R B S C T ψ x R y S z T φ

Proof

Step Hyp Ref Expression
1 rspc3v.1 x = A φ χ
2 rspc3v.2 y = B χ θ
3 rspc3v.3 z = C θ ψ
4 simpl1 A R B S C T ψ A R
5 simpl2 A R B S C T ψ B S
6 3 rspcev C T ψ z T θ
7 6 3ad2antl3 A R B S C T ψ z T θ
8 1 rexbidv x = A z T φ z T χ
9 2 rexbidv y = B z T χ z T θ
10 8 9 rspc2ev A R B S z T θ x R y S z T φ
11 4 5 7 10 syl3anc A R B S C T ψ x R y S z T φ