Metamath Proof Explorer


Theorem rspc4v

Description: 4-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2025)

Ref Expression
Hypotheses rspc4v.1 x = A φ χ
rspc4v.2 y = B χ θ
rspc4v.3 z = C θ τ
rspc4v.4 w = D τ ψ
Assertion rspc4v A R B S C T D U x R y S z T w U φ ψ

Proof

Step Hyp Ref Expression
1 rspc4v.1 x = A φ χ
2 rspc4v.2 y = B χ θ
3 rspc4v.3 z = C θ τ
4 rspc4v.4 w = D τ ψ
5 df-3an A R B S C T A R B S C T
6 1 ralbidv x = A w U φ w U χ
7 2 ralbidv y = B w U χ w U θ
8 3 ralbidv z = C w U θ w U τ
9 6 7 8 rspc3v A R B S C T x R y S z T w U φ w U τ
10 4 rspcv D U w U τ ψ
11 9 10 sylan9 A R B S C T D U x R y S z T w U φ ψ
12 5 11 sylanbr A R B S C T D U x R y S z T w U φ ψ
13 12 anasss A R B S C T D U x R y S z T w U φ ψ